

Delft University of Technology

The application perspective of mutatoin testing

Zhu, Qianqian

DOI
10.4233/uuid:116a487e-c14d-47f8-b1f5-8e9738d263d0
Publication date
2020
Document Version
Final published version
Citation (APA)
Zhu, Q. (2020). The application perspective of mutatoin testing. https://doi.org/10.4233/uuid:116a487e-
c14d-47f8-b1f5-8e9738d263d0

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:116a487e-c14d-47f8-b1f5-8e9738d263d0
https://doi.org/10.4233/uuid:116a487e-c14d-47f8-b1f5-8e9738d263d0
https://doi.org/10.4233/uuid:116a487e-c14d-47f8-b1f5-8e9738d263d0

THE APPLICATION PERSPECTIVE OF MUTATION
TESTING

THE APPLICATION PERSPECTIVE OF MUTATION
TESTING

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. dr. ir. T.H.J.J. van der Hagen,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op woensdag 24 juni 2020 om 12:30 uur

door

Qianqian ZHU

Master of Science in Computer Science,
Imperial College London, Verenigd Koningkrijk,

geboren te Wenzhou, China.

Dit proefschrift is goedgekeurd door de

promotoren: prof. dr. A. Zaidman, prof. dr. A. van Deursen
copromotor: dr. A. Panichella

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof. dr. A. Zaidman, Technische Universiteit Delft
Prof. dr. A. van Deursen, Technische Universiteit Delft
dr. A. Panichella, Technische Universiteit Delft

Onafhankelijke leden:
Prof. dr. ir. R.L. Lagendijk Technische Universiteit Delft
Prof. dr. T.E.J. Vos Technical University of Valancia, Spain &

Open University, the Netherlands.
Prof. dr. R. Feldt Chalmers University of Technology, Sweden
Prof. dr. M. Monperrus KTH Royal Institute of Technology, Sweden.
Prof. dr. E. Visser Technische Universiteit Delft, reservelid

The work in the thesis has been carried out under the auspices of the research school
IPA (Institute for Programming research and Algorithmics) and was financed by the Ned-
erlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), project TestRoots, grant
number 016.133.324.

Keywords: Software Testing, Mutation Testing, Software Quality. . .

Printed by: Gildeprint

Front & Back: Beautiful cover art that captures the entire content of this thesis in a
single illustration.

Copyright © 2020 by Q. Zhu

ISBN 000-00-0000-000-0

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

CONTENTS

Summary ix

Acknowledgements xi

1 Introduction 1
1.1 Mutation Testing . 2
1.2 Research Questions . 4
1.3 Research Methodology . 8
1.4 Contributions and Thesis Outline . 10

2 A SLR of How Mutation Testing Supports Quality Assurance Processes 13
2.1 Introduction . 14
2.2 Background . 15

2.2.1 Basic Concepts. 15
2.2.2 Historical Overview . 18
2.2.3 Comparisons with existing literature surveys 19

2.3 Research Method . 20
2.3.1 Research Questions . 21
2.3.2 Study Selection Strategy . 23
2.3.3 Data Extraction Strategy . 25
2.3.4 Review Protocol Validation. 34

2.4 Review Results . 35
2.4.1 RQ2.1: How is MT used in quality assurance processes? 36
2.4.2 RQ2.2: How are empirical studies related to mutation testing de-

signed and reported?. 43
2.4.3 Summary of Research Questions 57
2.4.4 Recommendation for Future Research 59

2.5 Threats to the Validity of this Review . 61
2.5.1 Article Selection . 62
2.5.2 Attribute Framework . 62
2.5.3 Article Characterisation . 63
2.5.4 Result Interpretation . 63

2.6 Conclusion . 63

3 An Investigation of Compression Techniques to Speed up MT 65
3.1 Introduction . 66
3.2 Background and Related Work . 67

3.2.1 Mutation Reduction Strategies . 67
3.2.2 Mutant Compression . 69

v

vi CONTENTS

3.3 Approach . 70
3.3.1 Overall Methodology. 70
3.3.2 overlapped grouping . 71
3.3.3 Mutation Knowledge. 72

3.4 Experimental study . 72
3.4.1 Experimental setup . 73
3.4.2 Evaluation Metrics . 74

3.5 Results . 76
3.5.1 RQ3.1: accuracy . 76
3.5.2 RQ3.2: speed-up . 79
3.5.3 RQ3.3: trade-offs . 81
3.5.4 Discussion . 82

3.6 Threats to Validity. 83
3.7 Conclusions. 83

4 An Exploratory Study on the Impact of Code Observability on MT 87
4.1 Introduction . 88
4.2 Background . 89

4.2.1 Mutation Testing . 89
4.2.2 Existing Object-Oriented Metrics for Testability 90
4.2.3 Code Observability. 90

4.3 Experimental Setup . 95
4.3.1 Mutation Testing . 96
4.3.2 Subject Systems . 97
4.3.3 Tool implementation. 97
4.3.4 Design of Experiment . 100
4.3.5 Evaluation Metrics . 102

4.4 RQ4.1 - RQ4.3 testability versus observability versus combination 103
4.4.1 Spearman’s rank order correlation 103
4.4.2 Random Forest. 105

4.5 RQ4.4 Code Refactoring. 109
4.5.1 Case 1: plot.MeterPlot::drawValueLabel from JFreeChart . . . 112
4.5.2 Case 2: axis.SymbolAxis::drawGridBands from JFreeChart . . . 113
4.5.3 Case 3: builder.IDKey::hashCode from Apache Commons Lang . 114
4.5.4 Case 4: AbstractCategoryItemRenderer::drawOutline from

JFreeChart . 114
4.5.5 Case 5: builder.ToStringStyle::setUseShortClassName from

Apache Commons Lang . 115
4.5.6 Case 6: exception.TooManyEvaluationsException::<init> from

Apache Commons Math . 116
4.5.7 RQ4.4 Summary . 118
4.5.8 Discussion . 118

4.6 Threats to Validity. 119
4.7 Related work . 120
4.8 Conclusion & Future Work . 121

CONTENTS vii

5 Mutation Testing for Physical Computing 123
5.1 Introduction . 124
5.2 Background and motivation . 124

5.2.1 Physical computing . 125
5.2.2 Mutation Testing . 125
5.2.3 Characteristics of Physical Computing 125

5.3 Designing Mutation Operators . 126
5.4 Tool Implementation . 129
5.5 Empirical Evaluation . 129

5.5.1 Case Studies with Raspberry Pi. 130
5.5.2 Case Studies with Arduino . 139
5.5.3 Summary . 143

5.6 Threats to Validity. 144
5.7 Related work . 144
5.8 Conclusion & Future Work . 145

6 Applying Mutation Testing to GPU Programs 147
6.1 Introduction . 148
6.2 Background . 149

6.2.1 GPU computing . 149
6.2.2 Example of GPU Programming. 150

6.3 Motivation . 151
6.4 Mutation Operators for GPU Programming 152

6.4.1 GPU-Specific Mutation Operators 152
6.4.2 Conventional Mutation Operators 156
6.4.3 GPU-specific v.s. Conventional Mutation Operators 156

6.5 Tool Implementation . 157
6.6 Empirical Evaluation . 158

6.6.1 Subject Systems . 158
6.6.2 Experimental Setup . 158

6.7 Results . 159
6.8 Threats To Validity . 166
6.9 Related Work . 167
6.10 Conclusion and Future Work . 167

7 Conclusion 169
7.1 Research Questions Revisited . 169
7.2 Threats to Validity. 171
7.3 Recommendations for future work . 172

References 175

Curriculum Vitæ 207

List of Publications 209

SUMMARY

The main goal of this thesis is to investigate, improve and extend the applicability of
mutation testing. To seek the potential directions of how to improve and extend the ap-
plicability of mutation testing, we have started with a systematic literature review on the
current state of how mutation testing is applied. The results from the systematic liter-
ature review have further guided us towards three directions of research: (1) speeding
up mutation testing; (2) deepening our understanding of mutation testing; (3) exploring
new application domains of mutation testing.

For the first direction, we have leveraged compression techniques and weak muta-
tion information to speed up mutation testing. The results have shown our proposed
mutant compression techniques can effectively speed up strong mutation testing up to
94.3 times with an accuracy > 90%. Given the second direction, we are interested in
gaining a better understanding of mutation testing especially in the situation where en-
gineers cannot kill all the mutants by just adding test cases. We have investigated the
relationships between code quality regarding the testability and observability, and the
mutation score. We have observed a correlation between observability metrics and the
mutation score. Furthermore, relatively simple refactoring operations/adding tests en-
able an increase in the mutation score.

As for the third direction, we have explored two new application domains: one is
physical computing, and the other is GPU programming. In both application domains,
we have designed new mutation operators based on our observations of the common
mistakes that could happen during the implementation of the software. We have found
promising results in that mutation testing can help in revealing weaknesses of the test
suite for both application domains.

In summary, we have improved the applicability of mutation by proposing a new
speed-up approach and investigating the relationship between testability/observability
and mutation testing. Also, we have extended the applicability of mutation testing in
physical computing and GPU programming domains.

ix

ACKNOWLEDGEMENTS

First of all, I would like to thank my supervisor and promotor Prof. Dr. Andy Zaidman for
his great support during my 4-year PhD research. Without his offer, I would never have
this opportunity to start a PhD journey. Also, despite his busy schedule, he is always will-
ing to answer my endless questions and give me numerous helpful suggestions during
the four years. He is unstinting in his expertise and experience to guide me: to set my
topic, to frame each of my chapters and to work towards this thesis in a structured way.
In the meanwhile, he encouraged me and praised me for every progress I made for my
research.

I am also greatly indebted to my family who supports my oversea study not only fi-
nancially but also mentally. They never stop encouraging me and cheering me up from
the distance. Thank you is not enough for my husband, Ce, who always supports me
unconditionally and listens to my endless nagging.

Finally, I would like to thank all my friends and colleagues for accompanying me and
providing great help during my PhD research. Without them, the four years would not
have been so colourfully and unforgettable.

xi

1
INTRODUCTION

Software testing has always been a hot topic in the research field of software engineer-
ing [77]. The critical goal of software testing is to ensure high quality and reliable soft-
ware programs. In 1972, Dijkstra made the well-known statement that “program testing
can be used to show the presence of bugs, but never to show their absence" [124]. His
saying indicates that testing is not the silver bullet for software quality. Later, Goode-
nough and Gerhart [159] proved that properly structured tests are capable of demon-
strating the absence of errors in a program. This finding opened up the new research
domain of “test criteria" [386]. Various test criteria have been proposed and studied
over the last four decades, such as statement coverage, branch coverage and mutation
adequacy [386]. The first two criteria, statement coverage and branch coverage, are both
under the category of structural coverage criteria; this category specifies testing require-
ments in terms of the coverage of a particular set of elements in the structure of the
program or the specification [386]. Different from structural coverage criteria, muta-
tion adequacy is introduced by mutation testing (or mutation analysis) [117, 168, 230], a
fault-based testing technique that assesses the test suite quality by systematically intro-
ducing small artificial faults [197]. The mutation adequacy score is used to measure the
effectiveness of a test set in terms of its ability to detect faults.

Mutation testing originated in the 1970s with works from Lipton [230], DeMillo et
al. [117] and Hamlet [168] and has been a very active research field over the last few
decades. The activeness of the field is in part evidenced by the extensive survey of more
than 390 papers on mutation testing that Jia and Harman published in 2011 [197]. Jia
and Harman’s survey highlights the research achievements that have been made over the
years, including theories, problems, cost reduction techniques, applications, empirical
evaluation, and tools [197]. This literature review was later extended by Papadakis et
al. [289] with more recent advances in mutation testing.

While existing surveys (e.g., [197, 241, 279]) provide us with a great overview of the
most influential realisations in research, we lack insight into how mutation testing is
actually applied. This thesis focuses on the applicability of mutation testing. We first aim
to understand the current state of how mutation testing is applied in a research context,

1

1

2 1. INTRODUCTION

thereby not excluding industrial practice, and then improve and extend the applicability
of mutation testing.

1.1. MUTATION TESTING
The idea behind mutation testing is based on two fundamental hypotheses: the Compe-
tent Programmer Hypothesis [117] and the Coupling Effect [117, 268]. DeMillo et al. [117]
introduced the Competent Programmer Hypothesis in 1978: “The competent program-
mers create programs that are close to being correct." This hypothesis implies that the
potential faults in the programs delivered by the competent programmers are just very
simple mistakes; these defects can be corrected by a few simple syntactical changes.
Thereby, mutation testing typically applies small syntactical changes to original pro-
grams to resemble faults made by “competent programmers".

The Coupling Effect further strengthens the first hypothesis by stating: “Test data that
distinguishes all programs differing from a correct one by only simple errors is so sensi-
tive that it also implicitly distinguishes more complex errors" [117]. This means complex
faults are coupled to simple faults. As a result, the mutants used in traditional mutation
testing are only limited to first-order mutants, which are created by applying the muta-
tion operator to the original program once.

Figure 1.1 summarises the generic process of mutation testing: given a program P
and a test suite T , first run T on P (Step 1). If the execution of T on P is correct or passed,
then a mutation engine makes syntactic changes to the program P: the rule that specifies
syntactic variations is defined as a mutation operator, and the result of one application of
a mutation operator is a set of mut ant sM (Step 2.2). Otherwise, fix P and go back to Step
1 (Step 2.1). After that, each mutant Pm 2 M is executed against T to verify whether test
cases in T fail or not (Step 3). The failure of the test execution means the mutant is killed.
If all the mutants inM are dead or killed, then the process of mutation testing terminates
(Step 4.1). Otherwise, check whether all live or surviving mutants are equivalent. If all live
mutants are equivalent, then mutation testing is completed (Step 5.1). If not, improve T
and go back to Step 1 until satisfying the condition(s) that all the mutants are dead and/or
all live mutants are equivalent.

The most widely-known mutation operators (also called mutant operators or mu-
tation rules) include Arithmetic Operator Replacement (AOR), Relational Operator Re-
placement (ROR) and Absolute Value Insertion (ABS). Here is an example of AOR muta-
tion operator: X=a+b is mutated to X=a-b, X=a£b, and X=a÷b.

The execution results of T on Pm 2M are compared with P : (1) if the output of Pm
is different from P , then Pm is killed by T ; (2) otherwise, i.e., the output of Pm is the
same as P , this leads to either (2.1) Pm being equivalent to P , which means that they are
syntactically different but functionally equivalent; or (2.2) T being not adequate to detect
the mutants, which requires test case augmentation. The result of mutation testing can
be represented by the mutation score (also referred to as mutation coverage or mutation
adequacy), which is defined as:

mut ati on_scor e = # ki l l ed_mut ant s
#nonequi valent_mut ant s

(1.1)

A mutation testing system can be regarded as a language system [47] since the pro-

1.1. MUTATION TESTING

1

3

CUeaWe
PXWaQWV¬

RXQ T RQ P

RXQ T RQ eacK
PXWaQWV Pm ∈¬

IQSXW
SURgUaP P

IQSXW WeVW
VXLWe T

P(T)
cRUUecW?

NR YeV
FL[P

All PXWaQWV
dead?

All liYe mXWaQWV
eTXiYaleQW?

NR

IPSURYe T
YeV NR

YeV

1

2

2.2

3

�

2.1

�.1

�.2

�.1 �.2

Figure 1.1: Generic process of mutation testing

grams under test must be parsed, modified and executed. The main components of
mutation testing consist of the mutant creation engine, the equivalent mutant detector,
and the test execution runner. There have been numerous mutation testing tools devel-
oped for different programming languages, such as Proteum [113] for C, Mujava [240]
and PiTest [13] for Java, and SQLMutation [342] for SQL.

The benefits of mutation testing have been extensively investigated and can be sum-
marised as [197]: 1) having better fault exposing capability compared to other test cov-
erage criteria [144, 228, 244], 2) being an excellent alternative to real faults and providing
a good indication of the fault detection ability of a test suite [50]. However, the limita-

1

4 1. INTRODUCTION

tions of mutation testing are inherent. Firstly, it requires to re-run the test suites against
each mutant, whose number increases exponentially with the size of the program under
test [93]. Also, the equivalent mutant detection is an inevitable stage of mutation testing
which is a prominent undecidable problem [91], thereby requiring human effort to inves-
tigate. In summary, the major limitations of mutation testing are as follows: 1) the high
computational cost caused by generating and executing the numerous mutants and, 2)
the tremendous time-consuming human investigation required for equivalent mutant
detection.

To address the issue of high computational cost, several methods have been pro-
posed and these can be classified in three main categories [277]: (do fewer) selecting
fewer mutants to evaluate [41, 271], (do smarter) using run-time information to avoid
unnecessary test executions [185, 200], (do faster) reducing the execution time for each
single mutant [344]. As for the equivalent mutant problem, in Madeyski et al. [241]’s
survey, they classified three main research directions: (1) detecting equivalent mutants,
such as Baldwin and Sayward [63] (using compiler optimisations), and Martin and Xie [242]
(through change-impact analysis); (2) avoiding equivalent mutant generation, such as
Mresa and Bottaci [258] (through selective mutation), and Harman et al. [174] (using
program dependence analysis); (3) suggesting equivalent mutants, such as dynamic in-
variants analysis [312], and coverage change examination (e.g., [314]).

More recently, the usefulness of mutants [203] has resulted in an increasing interest
by researchers. Several studies claimed that the majority of the mutants generated by ex-
isting mutation operators are equivalent, trivial and redundant [88, 198, 203, 219, 295],
which reduces the efficacy of the mutation score. To address this knowledge gap, numer-
ous studies have investigated how useful mutants are. Example studies include mutant
subsumption [219], stubborn mutants [373], and real-fault coupling [201, 295]. Mutant
subsumption, which was proposed by Bob Kurtz et al. [219], is a graph model to describe
the relationships among mutants, and can thus be used to eliminate the redundant mu-
tants. Stubborn mutants are a set of mutants that remain alive and that cannot be shown
to be equivalent [177]. Yao et al. [373] reported on the causes and prevalence of equiva-
lent mutants and their relationship to stubborn mutants based on a manual analysis of
1230 mutants. The investigations on the relation between mutants and real faults (real-
fault coupling) can be dated back to 1992 [118]. Recent works are based on large-scale
empirical studies using real-world programs, such as Just et al. [201] and Papadakis et
al. [295].

1.2. RESEARCH QUESTIONS
In this section, we summarise the research questions we propose for this thesis in order
to achieve our goal: to investigate, improve and extend the applicability of mutation
testing.

The first step is to investigate the current state of how mutation testing is applied.
To understand how mutation testing is actually applied (RQ21 in Chapter 2), we start
with a systematic literature review to summarise existing evidence concerning the main

1We number our research questions according to the chapter number of this thesis, thereby our research ques-
tion starting from 2.

1.2. RESEARCH QUESTIONS

1

5

applications of mutation testing and identify limitations and gaps in current research.
This is important because the existing surveys (e.g., [197, 241, 279]) only provide us with
an overview of the most influential realisations of mutation testing in research, thereby
omitting the perspective of how mutation testing is applied and what limitations are
encountered in research. To achieve our goal, we first would like to identify and classify
the main quality assurance processes where mutation testing is applied. This leads to
RQ2.1:

RQ2.1 How is mutation testing used in quality assurance processes2?

During the synthesis of the empirical evidence related to mutation testing, we also
became interested in how the related empirical studies are reported, so that we can pro-
vide guidelines for applying and reporting on mutation testing and recommendations
for future work. RQ2.2 addresses exactly this concern:

RQ2.2 How are empirical studies related to mutation testing designed and
reported?

Based on a collection of 191 papers published between 1981 and 2015, our systematic
literature review presents a detailed analysis of the application perspective of mutation
testing, where we only selected papers that use mutation testing as a tool for evaluating
or improving other quality assurance processes rather than focusing on the development
of mutation tools, operators or challenges and open issues for mutation testing. Among
the results, three further points attract our attention:

1. The high computational cost issue of mutation testing is not well-solved in the
context of our research body.

2. A deeper understanding of mutation testing is required, such as what particular
kinds of faults mutation testing is good at finding and what makes it hard to do
mutation testing.

3. Most studies use mutation testing as an assessment tool targeting unit tests; as
such, we feel that the application domain is quite limited.

The first item points us to the issue of the high computational cost when applying
mutation testing. We investigate whether we can use compression techniques to speed up
mutation testing (RQ3 in Chapter 3). More specifically, we devise six compression tech-
niques based on two clustering algorithms and three mutant selection strategies. The
clustering algorithms we adopt to cluster mutants are overlapped grouping and Formal
Concept Analysis (FCA). The overlapped method is the simplest and strictest clustering
method, i.e., elements are only grouped together if they are identical. Formal Concept
Analysis (FCA) was originally a data analysis method and has shown to be a powerful
mathematical technique to convey and summarise large amounts of information [364].

2The quality assurance processes include testing activities [71] and debugging [74] in general. In more specific,
the quality assurance processes include all the daily work responsibilities of test engineers (e.g. designing test
inputs, producing test case values, running test scripts, analysing results, and reporting results to developers
and managers) [47].

1

6 1. INTRODUCTION

FCA produces the concept lattice or concept hierarchy from a collection of objects and
their properties. In the mutation testing context, our FCA-based compression technique
only considers the maximal concepts that are directly connected to the exit point in the
lattice hierarchy, the so-called maximal groupings.

To select mutants for execution, we leverage the knowledge of mutation locations
and mutation operator types. To steer our investigation, we propose the following three
research questions:

RQ3.1 How accurate are different compression techniques?
RQ3.2 How do compression techniques perform in terms of speed-up?
RQ3.3 What is the trade-off between accuracy and speed-up for the compres-
sion techniques?

The second point from our literature review addresses the necessity to deepen the
understanding of mutation testing. The current research considers the mutation score
mostly related the test suite quality and mutant usefulness [201, 219, 295, 373]. However,
how can production code quality in terms of testability and observability influence the
mutation score? (RQ4 in Chapter 4) has rarely been explored. To answer this question,
we investigate the relationship between testability and observability metrics and muta-
tion testing. More specifically, we conjecture that software testability [89, 191] and code
observability [80, 328] are two key factors. The following three research questions steer
our investigation into the relationship between testability, observability and the muta-
tion score:

RQ4.1 What is the relation between testability metrics and the mutation score?
RQ4.2 What is the relation between observability metrics and the mutation
score?
RQ4.3 What is the relation between the combination of testability and observ-
ability metrics and the mutation score?

After investigating the relationship between testability, observability and the mu-
tation score, we still lack insight into how these relationships can be made actionable
for software engineers in practice. That is why, based on the observations from RQ4.1-
RQ4.3, we define anti-patterns or indicators that software engineers can apply to their
code to ensure that mutants can be killed. This leads us to RQ4.4:

RQ4.4 To what extent does the refactoring of anti-patterns based on testabil-
ity and observability help in improving the mutation score?

The third message from our literature review indicates that the application domain
of mutation testing is limited; this inspires us to explore more diverse applications for
mutation testing: the one is mutation testing for physical computing, and the other is
applying mutation testing to GPU programs.

For the first new application domain we have explored physical computing which
builds interactive systems between the physical world and computers [282]. Physical
computing, has been widely used in a wide variety of domains and applications, e.g., the

1.2. RESEARCH QUESTIONS

1

7

Internet of Things (IoT), wherein sensors and actuators blend seamlessly with the en-
vironment around us, and the information is shared across platforms [166]. Examples
of physical computing applications (or cyber-physical systems) include medical devices
and systems, aerospace systems, transportation vehicles and intelligent highways, de-
fense systems, robotic systems, process control, factory automation, building and envi-
ronmental control and smart spaces [302]. Compared to conventional software projects,
the costs associated with failing physical computing systems are often even bigger, as
bugs can result in real-life accidents [186]. For example, a robotic arm might accidentally
hurt the human if the programmer does not set up the initial state properly. Therefore,
to develop a rigorous and sound physical computing system, a high-quality test suite
becomes crucial. This brings us to mutation testing, which has been shown to perform
well in exposing faults [144, 228, 244].

To investigate whether physical computing can benefit from mutation testing (RQ5 in
Chapter 5), we propose a novel mutation testing approach for physical computing sys-
tems. Specifically, we define a set of mutation operators based on common mistakes that
we have observed when developing physical computing systems. To assess the efficacy
of our mutation testing approach, we implement a mutation testing tool for physical
computing systems (coined MUTPHY) to answer the following questions:

RQ5.1 How effective is MUTPHY in evaluating the existing test suite?
RQ5.2 How efficient is MUTPHY in generating non-equivalent mutants?
RQ5.3 Is it possible to kill all non-equivalent surviving mutants by adding
extra test cases?

GPU computing, the other application domain we have targeted, aims to use a GPU
as a co-processor to accelerate CPUs for general-purpose scientific and engineering com-
puting [283]. Compared to the CPU, the GPU contains many more transistors devoted
to data processing rather than data caching and flow control [267]. Thus, the GPU is
especially well-suited for compute-intensive, highly parallel computation.

Thanks to rapid advances in programmability and performance, we have observed
that GPUs have been widely applied in High-Performance Computing (HPC) [134, 336],
as well as safety-critical domains (e.g., medical science [332]). This attracts increasing at-
tention in terms of quality assurance for GPU applications [158, 303]. Again, we come up
with mutation testing, to investigate if mutation testing can help in GPU program testing
(RQ6 in Chapter 6). To enable mutation testing for GPU applications, we develop a mu-
tation testing tool named MUTGPU. We steer our investigation along the four research
questions:

RQ6.1 How frequently can GPU-specific mutation operators be applied?
RQ6.2 How effective are conventional mutation operators in evaluating the
test suite of GPU programs?
RQ6.3 How effective are GPU-specific mutation operators in evaluating the
test suite of GPU programs?
RQ6.4 How do GPU-specific mutation operators compare with conventional
mutation operators in terms of the improvement?

1

8 1. INTRODUCTION

DeeSen XndeUVWanding of
mXWaWion WeVWing

RQ2 HoZ iV mXWaWion
WeVWing¬acWXall\¬aSSlied?

1. The iVVXe of high comSXWaWion
coVW iV noW Zell VolYed.

2. A deeSeU XndeUVWanding of
mXWaWion WeVWing iV UeTXiUed

3. The aSSlicaWion domain iV limiWed.

RQ3¬Can comSUeVVion
WechniTXeV be XVed Wo

VSeed XS mXWaWion
WeVWing?

RQ4¬HoZ¬can Whe SUodXcWion
code TXaliW\ (in WeUmV of

WeVWabiliW\ and obVeUYabiliW\)
inÁXence Whe mXWaWion VcoUe?

RQ5 Can Sh\Vical
comSXWing beneÀW fUom

mXWaWion WeVWing?

RQ6¬Can¬mXWaWion WeVWing
helS in GPU SUogUam

WeVWing?

E[SloUe neZ aSSlicaWion domainV

SSeed XS mXWaWion WeVWing

S\VWemaWic liWeUaWXUe UeYieZ

To inYeVWigaWe, imSUoYe and e[Wend
Whe aSSlicabiliW\ of mXWaWion WeVWing

Figure 1.2: Summary of research questions

To sum up, we present an overview of our research questions in Figure 1.2. As shown
in Figure 1.2, we start with RQ2 which seeks to find out how mutation testing is actu-
ally applied. We answer RQ2 by conducting a systematic literature review, resulting in
three interesting findings for further investigation. The first point “The issue of high
computation cost is not well solved" leads us to RQ3. RQ4 is generated from the sec-
ond finding which requires us to deepen the understanding of mutation testing. More
specifically, we investigate the relationship between production code quality in terms of
testability/observability and mutation testing. The last message indicating that the cur-
rent application domain is limited inspires us to explore new applications for mutation
testing RQ5 and RQ6.

1.3. RESEARCH METHODOLOGY
The main goal of this thesis is to explore ways to improve and extend the applicabil-
ity of mutation testing. Therefore, our first step is to synthesise existing studies to gain
insights into the state-of-the-art research regarding the application perspective of mu-
tation testing. As systematic literature reviews [212] have been shown to be good tools
to summarise existing evidence concerning a technology and identify gaps in current
research [222], we follow this approach for reaching our objectives of RQ2.

The results from our systematic literature inspire and lead us to three directions of

1.3. RESEARCH METHODOLOGY

1

9

research: (1) speeding up mutation testing via compression techniques (RQ3); (2) deep-
ening understanding of mutation testing by investigation of the relationship between
testability, observability and the mutation score (RQ4); and (3) exploring new applica-
tion domains of mutation testing (RQ5 and RQ6). To answer RQ3 to RQ6, we conduct
a series of empirical studies by employing a combination of quantitive and qualitative
approaches. Because quantitative strategies such as experimental studies are appropri-
ate when testing the effect of some manipulation or activity, while a qualitative study of
beliefs and understandings are appropriate to find out why the results from a quanti-
tative investigation as they are [105]. We adopt different empirical methods to evaluate
our proposed approaches or hypotheses, e.g., experiment (e.g., Chapter 3) and case study
(e.g., Chapter 4).

In the following section, we would like to present an overview of the research method-
ology to show that we use different research methods in this thesis. For each research
question, we are going to describe our research methods in more detail.

Chapter 2 For RQ2, we perform a systematic literature review [212] to investigate how
mutation testing is actually applied. Unlike the general literature review, the system-
atic literature review aims to eliminate bias and incompleteness through a systematic
mechanism [222]. We follow Kitchenham [212]’s guidelines for applying the systematic
literature review specifically in the field of software engineering. To answer RQ2.1 and
RQ2.2, we generate an attribute framework to characterise each paper. The attribute
framework consists of seven facets of interest that are highly relevant to the information
we need to answer the questions. In this way, we can also show quantitative results for
each attribute to support our answers.

Chapter 3 The goal of RQ3 is to verify whether we can use compression techniques
to speed up mutation testing. To achieve that, we conduct an experimental study with
20 open-source Java projects and using the test suites manually written by the original
developers. To answer RQ3.1 to RQ3.3, we evaluate six compression techniques together
with two baselines: mutation sampling and weak mutation. This study mainly adopts
quantitive research approaches by comparing the performance of different techniques
in terms of accuracy and speed-up. In addition to a set of quantitive evaluation metrics,
such as the absolute error and the overhead, we also adopt Friedman’s test [304] with
Æ = 0.05 to assess whether the differences among the eight strategies are statistically
significant or not. Also, in case we observe exceptions to the major findings, we also
conduct a qualitative analysis to understand why.

Chapter 4 To answer RQ4.1 to RQ4.3, we aim to investigate the relationship between
testability/observability metrics and mutation testing. Thereby, we conduct an experi-
mental study using six systems publicly available on GitHub. In this experiment, we first
adopt Spearman’s rank-order correlation to statistically measure the correlation between
each metric (both existing code metrics and our newly proposed mutant observability
metrics) and the mutation score of the corresponding methods or classes. Moreover,
except for the pair-wise correlations between each metric and the mutation score, we
are also interested in how those metrics interact with each other. To do so, we adopt

1

10 1. INTRODUCTION

Random Forest to predict the mutation score based on those metrics. For RQ4.4, we
perform a case study involving 16 code fragments to investigate whether the refactoring
of anti-patterns improves the mutation score.

Chapter 5 To investigate RQ5, we first need a prototype tool to enable mutation testing
for physical computing systems. So, we develop a mutation testing tool coined MUTPHY

working on Raspberry Pi and Arduino platforms. To assess the efficacy of our mutation
testing approach, we conducted an experimental study. To answer RQ5.1 and RQ5.2, we
compare the mutation score and the number of equivalent mutants quantitively. As for
RQ5.3, we analyse the non-equivalent surviving mutants in detail and try to engineer
new test cases to kill these mutants manually.

Chapter 6 Similar to RQ5, the first step to answer RQ6 is to implement a tool to ap-
ply mutation testing in GPU programs, and then we conduct an experimental study us-
ing our self-implemented tool named MUTGPU. To answer RQ6.1, we evaluate the fre-
quency of each mutation operator based on the number of generated mutants and the
mutation score. For RQ6.2 and RQ6.3, we determine the effectiveness of the mutation
operators in assessing test quality of GPU programs based on non-equivalent surviv-
ing mutants, where we use both quantitative (by comparing the mutation scores) and
qualitative (by manually analysing non-equivalent mutants) methods. To compare the
conventional mutation operators with GPU-specific ones (RQ6.4), we first engineer new
test cases to obtain a C-sufficient test suite for each system. Then, we manually analyse
the remaining GPU mutants that cannot be detected by the C-sufficient test suites.

1.4. CONTRIBUTIONS AND THESIS OUTLINE
In this section, we are going to summarise the contributions of this thesis, and then
present the outline of the thesis.

An in-depth literature survey on the application perspective of mutation testing
(Chapter 2). We conduct a systematic literature review of 191 studies that apply muta-
tion testing in scientific experiments, clearly contrasting previous literature reviews that
surveyed the main development of mutation testing, and that did not specifically go into
how mutation testing is applied (e.g., [197, 241, 279]).

A detailed attribute framework that generalises and details the essential elements
related to the actual use of mutation testing (Chapter 2). Through a detailed reading of
this research body, we derive an attribute framework that is consequently used to char-
acterise the studies in a structured manner. The resulting attribute framework can be
used as a reference for researchers when describing how they apply mutation testing.

A series of recommendations for future work including valuable suggestions on
how to report mutation testing in testing experiments in an appropriate manner (Chap-
ter 2). Based on the results of the literature review, we provide (1) guidelines on how to
apply and subsequently report on mutation testing in testing experiments and (2) rec-
ommendations for future work.

A detailed investigation of different compression techniques to speed up mutation
testing (Chapter 3). We propose six mutation compression strategies by leveraging mu-

1.4. CONTRIBUTIONS AND THESIS OUTLINE

1

11

tant clustering algorithms and weak mutation. To evaluate the efficacy of our methods,
we conduct a study on 20 open source projects. The overall results indicate that muta-
tion compression techniques are a better choice than random sampling and weak mu-
tation in practice: they can effectively speed up strong mutation 6.3 to 94.3 times with
an accuracy of >90%.

A detailed investigation of the relationship between testability and observability
metrics and the mutation score (Chapter 4). We collect 64 existing source code quality
metrics for testability, and propose a set of metrics that specifically target mutant ob-
servability. Then, we use statistical analysis on open-source Java projects to investigate
the relationship between testability, observability, and the mutation score. Last, we per-
form a case study involving 16 code fragments to investigate whether the refactoring of
anti-patterns based on the aforementioned metrics can improve the mutation score.

A generic mutation testing approach for physical computing systems (Chapter 5).
We propose a novel mutation testing approach for physical computing systems. Specifi-
cally, we define a set of mutation operators based on common mistakes that we observe
when developing physical computing systems. Also, we implement a mutation testing
tool coined MUTPHY for physical computing systems. We present an initial evaluation
of our approach on the Raspberry Pi and Arduino platforms, which shows promising
results.

A generic mutation testing approach for GPU programs (Chapter 6). First, we de-
sign nine new GPU-specific mutation operators in addition to conventional mutation
operators. We develop a mutation testing tool named MUTGPU especially for GPU ap-
plications in the CUDA programming model. We perform an empirical study involving
six GPU projects.

The remainder of the thesis is organised as follows: Chapter 2 presents a systematic
literature review on the application of mutation testing. Chapter 3 investigates six mu-
tation compression techniques to speed up mutation testing. Chapter 4 describes a de-
tailed investigation of the relationship between testability and observability metrics and
the mutation score. Chapter 5 introduces a novel mutation testing approach for physi-
cal computing systems, while Chapter 6 provides a study on applying mutation testing
in GPU programming. Chapter 7 concludes the thesis.

2
A SYSTEMATIC LITERATURE

REVIEW OF HOW MUTATION

TESTING SUPPORTS QUALITY

ASSURANCE PROCESSES

Mutation testing has been very actively investigated by researchers since the 1970s and re-
markable advances have been achieved in its concepts, theory, technology and empirical
evidence. While the most influential realisations have been summarised by existing lit-
erature reviews, we lack insight into how mutation testing is actually applied. Our goal
is to identify and classify the main applications of mutation testing and analyse the level
of replicability of empirical studies related to mutation testing. To this aim, this chapter
provides a systematic literature review on the application perspective of mutation testing
based on a collection of 191 papers published between 1981 and 2015. In particular, we
analysed in which quality assurance processes mutation testing is used, which mutation
tools and which mutation operators are employed. Additionally, we also investigated how
the inherent core problems of mutation testing, i.e., the equivalent mutant problem and
the high computational cost, are addressed during the actual usage. The results show that
most studies use mutation testing as an assessment tool targeting unit tests, and many
of the supporting techniques for making mutation testing applicable in practice are still
underdeveloped. Based on our observations, we made nine recommendations for future
work, including an important suggestion on how to report mutation testing in testing ex-
periments in an appropriate manner.

This chapter has been published in Software Testing Verification Reliability (STVR) [393].

13

2

14 2. A SLR OF HOW MUTATION TESTING SUPPORTS QUALITY ASSURANCE PROCESSES

2.1. INTRODUCTION
Mutation testing is defined by Jia and Harman [197] as a fault-based testing technique
which provides a testing criterion called the mutation adequacy score. This score can be
used to measure the effectiveness of a test set in terms of its ability to detect faults [197].
The principle of mutation testing is to introduce syntactic changes into the original pro-
gram to generate faulty versions (called mutants) according to well-defined rules (mu-
tation operators) [279]. Mutation testing originated in the 1970s with works from Lip-
ton [230], DeMillo et al. [117] and Hamlet [168] and has been a very active research field
over the last few decades. The activeness of the field is in part evidenced by the exten-
sive survey of more than 390 papers on mutation testing that Jia and Harman published
in 2011 [197]. Jia and Harman’s survey highlights the research achievements that have
been made over the years, including the development of tools for a variety of languages
and empirical studies performed [197]. Additionally, they highlight some of the actual
and inherent problems of mutation testing, amongst others: (1) the high computational
cost caused by generating and executing the numerous mutants and (2) the tremendous
time-consuming human investigation required by the test oracle problem and equiva-
lent mutant detection.

While existing surveys (e.g., [197, 241, 279]) provide us with a great overview of the
most influential realisations in research, we lack insight into how mutation testing is ac-
tually applied. Specifically, we are interested in analysing in which quality assurance
processes mutation testing is used, which mutation tools are employed and which mu-
tation operators are used. Additionally, we want to investigate how the aforementioned
problems of the high computational cost and the considerable human effort required
are dealt with when applying mutation testing. In order to steer our research, we aim to
fulfil the following objectives:

• to identify and classify the applications of mutation testing in quality assurance
processes;

• to analyse how the main problems are coped with when applying mutation testing;

• to provide guidelines for applying mutation testing in testing experiments;

• to identify gaps in current research and to provide recommendations for future
work.

As systematic literature reviews have been shown to be good tools to summarise existing
evidence concerning a technology and identify gaps in current research [212], we fol-
low this approach for reaching our objectives. We only consider the articles which pro-
vide sufficient details on how mutation testing is used in their studies, i.e., we require at
least a brief specification about the adopted mutation tool, mutation operators or mu-
tation score. Moreover, we selected only papers that use mutation testing as a tool for
evaluating or improving other quality assurance processes rather than focusing on the
development of mutation tools, operators or challenges and open issues for mutation
testing. This resulted in a collection containing 191 papers published from 1981 to 2015.
We analysed this collection in order to answer the following two research questions:

RQ2.1: How is mutation testing used in quality assurance processes?

2.2. BACKGROUND

2

15

This research question aims to identify and classify the main software testing tasks
where mutation testing is applied. In particular, we are interested in the following key
aspects: (1) in which circumstances mutation testing is used (e.g., assessment tool), (2)
which quality assurance processes are involved (e.g., test data generation, test case pri-
oritisation), (3) which test level it targets (e.g., unit level) and (4) which testing strategies
it supports (e.g., structural testing). The above four detailed aspects are defined to char-
acterise the essential features related to the usage of mutation testing and the quality
assurance processes involved. With these elements in place, we can provide an in-depth
analysis of the applications of mutation testing.

RQ2.2: How are empirical studies related to mutation testing designed and reported?
The objective of this question is to synthesise empirical evidence related to muta-

tion testing. The case studies or experiments play an inevitable role in a research study.
The design and demonstration of the evaluation methods should ensure the replicability.
For replicability, we mean that the subject, the basic methodology, as well as the result,
should be clearly pointed out in the article. In particular, we are interested in how the
articles report the following information related to mutation testing: (1) mutation tools,
(2) mutation operators, (3) mutant equivalence problem, (4) techniques for reduction of
computational cost and (5) subject programs used in the case studies. After gathering
this information, we can draw conclusions from the distribution of related techniques
adopted under the above five facets and thereby provide guidelines for applying muta-
tion testing and reporting the used setting/tools.

The remainder of this review is organised as follows: Section 2.2 provides an overview
on background notions on mutation testing. Section 2.3 details the main procedures we
followed to conduct the systematic literature review and describes our inclusion and ex-
clusion criteria. Section 2.4 presents the discussion of our findings, particularly Section
2.4.3 summarises the answers to the research questions, while Section 2.4.4 provides
recommendations for future research. Section 2.5 discusses the threats to validity, and
Section 2.6 concludes the chapter.

2.2. BACKGROUND
In order to level the playing field, we first provide the basic concepts related to mutation
testing, i.e., its fundamental hypothesis and generic process, including the Competent
Programmer Hypothesis, the Coupling Effect, mutation operators and the mutation score.
Subsequently, we discuss the benefits and limitations of mutation testing. After that, we
present a historical overview of mutation testing where we mainly address the studies
that concern the application of mutation testing.

2.2.1. BASIC CONCEPTS

FUNDAMENTAL HYPOTHESIS

Mutation testing starts with the assumption of the Competent Programmer Hypothesis
(introduced by DeMillo et al. [117] in 1978): “The competent programmers create pro-
grams that are close to being correct." This hypothesis implies that the potential faults
in the programs delivered by the competent programmers are just very simple mistakes;
these defects can be corrected by a few simple syntactical changes. Inspired by the above

2

16 2. A SLR OF HOW MUTATION TESTING SUPPORTS QUALITY ASSURANCE PROCESSES

hypothesis, mutation testing typically applies small syntactical changes to original pro-
grams, thus implying that the faults that are seeded resemble faults made by “competent
programmers".

At first glance, it seems that the programs with complex errors cannot be explicitly
generated by mutation testing. However, the Coupling Effect, which was coined by De-
Millo et al. [117] states that “Test data that distinguishes all programs differing from a
correct one by only simple errors is so sensitive that it also implicitly distinguishes more
complex errors". This means complex faults are coupled to simple faults. This hypoth-
esis was later supported by Offutt [268, 269] through empirical investigations over the
domain of mutation testing. In his experiments, he used first-order mutants, which are
created by applying the mutation operator to the original program once, to represent
simple faults. Conversely, higher-order mutants, which are created by applying muta-
tion operators to the original program more than once, stand for complex faults. The
results showed that the test data generated for first-order mutants killed a higher per-
centage of mutants when applied to higher-order mutants, thus yielding positive em-
pirical evidence about the Coupling Effect. Besides, there has been a considerable effort
in validating the coupling effect hypothesis, amongst others the theoretical studies of
Wah [358–360] and Kapoor [208].

THE GENERIC MUTATION TESTING PROCESS.
After introducing the fundamental hypotheses of mutation testing, we are going to give
a detailed description of the generic process of mutation testing:

Given a program P and a test suite T , a mutation engine makes syntactic
changes to the program P: the rule that specifies syntactic variations are de-
fined as a mut ati on oper ator , and the result of one application of a mu-
tation operator is a set of mut ant s M. After that, each mutant Pm 2 M is
executed against T to verify whether test cases in T fail or not.

Here is an example of a mutation operator, i.e., Arithmetic Operator Replacement
(AOR), on a statement X=a+b. The produced mutants include X=a-b, X=a£b, and X=a÷b.

The execution results of T on Pm 2M are compared with P : (1) if the output of Pm is
different from P , then Pm is killed by T ; (2) otherwise, i.e., the output of Pm is the same as
P , this leads to either (2.1) Pm is equivalent to P , which means that they are syntactically
different but functionally equivalent; or (2.2) T is not adequate to detect the mutants,
which requires test case augmentation.

The result of mutation testing can be summarised using the mutation score (also re-
ferred to as mutation coverage or mutation adequacy), which is defined as:

mut ati on scor e = # ki l l ed mut ant s
nonequi valent mut ant s

(2.1)

From the equation above, we can see that the detection of equivalent mutants is done be-
fore calculating the mutation score, as the denominator explicitly mentions non-equivalent
mutants. Budd and Angluin [91] have theoretically proven that the equivalence of two
programs is not decidable. Meanwhile, in their systematic literature survey, Madeyski

2.2. BACKGROUND

2

17

et al. [241] have also indicated that the equivalent mutant problem takes an enormous
amount of time in practice.

A mutation testing system can be regarded as a language system [47] since the pro-
grams under test must be parsed, modified and executed. The main components of
mutation testing consist of the mutant creation engine, the equivalent mutant detec-
tor, and the test execution runner. The first prototype of a mutation testing system for
Fortran was proposed by Budd and Sayward [90] in 1977. Since then, numerous muta-
tion tools have been developed for different languages, such as Mothra [210] for Fortran,
Proteum [113] for C, Mujava [240] for Java, and SQLMutation [342] for SQL.

BENEFITS & LIMITATIONS

Mutation testing is widely considered as a “high end" test criterion [47]. This is in part
due to the fact that mutation testing is extremely hard to satisfy because of the massive
number of mutants. However, many empirical studies found that it is much stronger
than other test adequacy criteria in terms of fault exposing capability, e.g., Mathur and
Wong [244], Frankl et al. [144] and Li et al. [228]. In addition to comparing mutation
testing with other test criteria, there have also been empirical studies comparing real
faults and mutants. The most well-known research work on such a topic is by Andrews
et al. [50]: they suggest that when using carefully selected mutation operators and after
removing equivalent mutants, mutants can provide a good indication of the fault detec-
tion ability of a test suite. As a result, we consider the benefits of mutation testing to
be:

• better fault exposing capability compared to other test coverage criteria, e.g., all-
use;

• a good alternative to real faults which can provide a good indication of the fault
detection ability of a test suite.

The limitations of mutation testing are inherent. Firstly, both the generation and
execution of a vast number of mutants are computationally expensive. Secondly, the
equivalent mutant detection is also an inevitable stage of mutation testing which is a
prominent undecidable problem, thereby requiring human effort to investigate. Thus,
we consider the major limitations of mutation testing to be:

• the high computational cost caused by the large number of mutants;

• the undecidable Equivalent Mutant Problem resulting in the difficulty of fully au-
tomating the equivalent mutant analysis.

To deal with the two limitations above, a lot of research effort has been devoted to re-
duce the computational cost and to propose heuristics to detect equivalent mutants. As
for the high computational cost, Offutt and Untch [277] performed a literature review in
which they summarised the approaches to reduce computational cost into three strate-
gies: do fewer, do smarter and do faster. These three types were later classified into two
classes by Jia and Harman [197]: reduction of the generated mutants and reduction of
the execution cost. Mutant sampling (e.g., [41, 367]), mutant clustering (e.g., [188, 195])

2

18 2. A SLR OF HOW MUTATION TESTING SUPPORTS QUALITY ASSURANCE PROCESSES

and selective mutation (e.g., [258, 271, 322]) are the most well-known techniques for re-
ducing the number of mutants while maintaining efficacy of mutation testing to an ac-
ceptable degree. For reduction of the execution expense, researchers have paid much
attention to weak mutation (e.g., [116, 185, 272]) and mutant schemata (e.g., [344, 345]).

To overcome the Equivalent Mutant Problem, there are mainly three categories clas-
sified by Madeyski et al. [241]: (1) detecting equivalent mutants, such as Baldwin and
Sayward [63] (using compiler optimisations), Hierons et al. [177] (using program slic-
ing), Martin and Xie [242] (through change-impact analysis), Ellims et al. [132] (using
running profile), and du Bousquet and Delaunay [129] (using model checker); (2) avoid-
ing equivalent mutant generation, such as Mresa and Bottaci [258] (through selective
mutation), Harman et al. [174] (using program dependence analysis), and Adamopoulos
et al. [42] (using co-evolutionary search algorithm); (3) suggesting equivalent mutants,
such as bayesian learning [350], dynamic invariants analysis [312], and coverage change
examination (e.g. [314]).

2.2.2. HISTORICAL OVERVIEW
In this subsection, we are going to present a chronological overview of important re-
search in the area of mutation testing. As the focus of our review is the application per-
spective of mutation testing, we mainly address the studies that concern the application
of mutation testing. In the following paragraphs, we will first give a brief summary of the
development of mutation testing, and — due to the sheer size of the research body — we
will then highlight some notable studies on applying mutation testing.

Mutation testing was initially introduced as a fault-based testing method which was
regarded as significantly better at detecting errors than the covering measure approach [92].
Since then, mutation testing has been actively investigated and studied thereby result-
ing in remarkable advances in its concepts, theory, technology and empirical evidence.
The main interests in the area of mutation testing include (1) defining mutation oper-
ators [43], (2) developing mutation testing systems[185, 210, 240], (3) reducing the cost
of mutation testing [271, 345], (4) overcoming the equivalent mutant detection prob-
lem [241], and (5) empirical studies with mutation testing [50]. For more literature on
mutation testing, we refer to the existing surveys of DeMillo [115], Offutt and Untch [277],
Jia and Harman [197] and Offutt [279].

In the meanwhile, mutation testing has also been applied to support other testing
activities, such as test data generation and test strategy evaluation. The early application
of mutation testing can be traced back to the 1980s [130, 264–266]). Ntafos is one of
the very first researchers to use mutation testing as a measure of test set effectiveness.
Ntafos applied mutation operators (e.g., constant replacement) to the source code of 14
Fortran programs [265]. The generated test suites were based on three test strategies,
i.e., random testing, branch testing and data-flow testing, and were evaluated regarding
mutation score.

DeMillo and Offutt [116] are the first to automate test data generation guided by
fault-based testing criteria. Their method is called Constraint-based testing (CBT). They
transformed the conditions under which mutants will be killed (necessity and sufficiency
condition) to the corresponding algebraic constraints (using constraint template table).
The test data was then automatically generated by solving the constraint satisfaction

2.2. BACKGROUND

2

19

problem using heuristics. Their proposed constraint-based test data generator is lim-
ited and was only validated on five laboratory-level Fortran programs. Other remark-
able approaches of the automatic test data generation includes a paper by Zhang et
al. [382], who adopted Dynamic Symbolic Execution, and a framework by Papadakis and
Malevris [293] in which three techniques, i.e., Symbolic Execution, Concolic Testing and
Search-based Testing, were used to support the automatic test data generation.

Apart from test data generation, mutation testing is widely adopted to assess the
cost-effectiveness of different test strategies. The work above by Ntafos [265] is one of the
early studies on applying mutation testing. Recently, there has been a considerable effort
in the empirical investigation of structural coverage and fault-finding effectiveness, in-
cluding Namin and Andrews [262] and Inozemtseva et al. [189]. Zhang and Mesbah [384]
proposed assertion coverage, while Whalen et al. [362] presented observable modified
condition/decision coverage (OMC/DC); these novel test criteria were also evaluated via
mutation testing.

Test case prioritisation is one of the practical approaches to reducing the cost of re-
gression testing by rescheduling test cases to expose the faults as earlier as possible. Mu-
tation testing has also been applied to support test case prioritisation. Among these
studies, two influential papers are Rothermel et al. [307] and Elbaum et al. [131] who
proposed a new test case prioritisation method based on the rate of mutants killing.
Moreover, Do and Rothermel [127, 128] measured the effectiveness of different test case
prioritisation strategies via mutation faults since Andrews et al.’s empirical study sug-
gested that mutation faults can be representative of real faults [50].

The test-suite reduction is another testing activity we identified which is supported
by mutation testing. The research work of Offutt et al. [275] is the first to target test-suite
reduction strategies, especially for mutation testing. They proposed Ping-Pong reduc-
tion heuristics to select test cases based on their mutation scores. Another notable work
is Zhang et al. [381] that investigated test-suite reduction techniques on Java programs
with real-world JUnit test suites via mutation testing.

Another portion of the application of mutation testing is debugging, such as fault
localisation. Influential examples include an article by Zhang et al. [361] in which muta-
tion testing is adopted to investigate the effect of coincidental correctness in the context
of a coverage-based fault localisation technique, and a novel fault localisation method by
Papadakis et al. [290], [291] who used mutants to identify the faulty program statements.

2.2.3. COMPARISONS WITH EXISTING LITERATURE SURVEYS
In this section, we summarise the existing literature surveys on mutation testing and
compare these surveys to our literature review. Table 2.1 lists seven literature surveys
which we have found so far, including the years which the survey covered, whether the
survey is a systematic literature review and the survey’s main idea.

First of all, the scope of our literature review is different from the existing litera-
ture surveys. The surveys of DeMillo [115], Woodward [368], Offutt and Untch [277],
Offutt [279] and Jia and Harman [197] focused on the development of mutation test-
ing, where they summarised and highlighted the most influential realisations and find-
ings on mutation testing. In the insightful works of Offutt and Untch [277], Offutt [279]
and Jia and Harman [197], they only mentioned some of the most crucial studies which

2

20 2. A SLR OF HOW MUTATION TESTING SUPPORTS QUALITY ASSURANCE PROCESSES

Table 2.1: Summary of existing surveys on mutation testing

Survey Covered years SLR? Main idea

DeMillo [115] 1978-1989 No Summarise the conceptual basis, development of the mutation
testing at the early stage

Woodward [368] 1978-1989 No Review the mutation testing techniques of strong, weak and firm
mutation

Offutt and Untch [277] 1977-2000 No Review the history of mutation testing and the existing optimi-
sation techniques for mutation testing

Offutt [279] 1977-2010 No Review past mutation analysis research starting with the Mothra
project, and summarise new trends of applications of mutation
testing

Jia and Harman [197] 1977-2009 No Provide a comprehensive analysis and survey of Mutation Test-
ing, including theories, problems, cost reduction techniques,
applications, empirical evaluation, and tools

Madeyski et al. [241] 1979-2010 Yes Present a systematic literature review in the field of the equiva-
lent mutant problem

Hanh et al. [170] 1991-2014 No Analyse and conduct a survey on generating test data based on
mutation testing

Note: Column ‘SLR?’ means whether the paper is a systematic literature review or not.

applied mutation testing to support quality assurance processes, thus, the relevant re-
search questions posed by us could not be answered by their reviews. Madeyski et al. [241]
reviewed the equivalent mutant problem which is a subarea of mutation testing. Com-
pared to their survey work, we are more interested in how approaches for detecting
equivalent mutant are actually used in a research context. Hanh et al. [170] analysed
the literature on mutation-based test data generation, which is a subset of our litera-
ture review. Our literature review not only covers the test data generation but also other
quality assurance processes, e.g., test case prioritisation and debugging.

Moreover, our literature review follows the systematic literature review (SLR) method-
ology [85] which is not the case for six other literature reviews (Madeyski et al. [241] be-
ing the exception): we aim to review the existing articles in a more systematic way and
provide a more complete list of the existing works on how mutation testing is actually
applied in quality assurance processes. It is important to mention, though, that taking a
subset of Offutt and Untch [277], Offutt [279] and Jia and Harman [197]’s results regard-
ing quality assurance applications will not give as complete a view on quality assurance
applications as our SLR actually does.

2.3. RESEARCH METHOD
In this section, we describe the main procedures we took to conduct this review. We
adopted the methodology of the systematic literature review. A systematic literature re-
view [212] is a means of aggregating and evaluating all the related primary studies under
a research scope in an unbiased, thorough and trustworthy way. Unlike the general lit-
erature review, the systematic literature review aims to eliminate bias and incomplete-
ness through a systematic mechanism [222]. Kitchenham [212] presented comprehen-
sive and reliable guidelines for applying the systematic literature review to the field of
software engineering. The guidelines cover three main phases: (i) planning the review,
(ii) conducting the review, and (iii) reporting the review. Each step is well-defined and
well-structured. By following these guidelines, we can reduce the likelihood of gener-

2.3. RESEARCH METHOD

2

21

initial selection¬
(221 articles)

search
quer\

inclusion/e[clusion
criteria

Snowballing
process

after selection
criteria¬

(97 articles)

Ànal selection¬
(191 articles)

attribute
identiÀcation

initial seven
facets

attribute
¬generalisation

value
¬generalisation

attribute
framework

attribute value
assignment

attributes value
¬summerisation

overview of attribute
distributions

interpretationsummaries &
recommendations

AUWicle SelecWiRQ

AWWUibXWe FUameZRUk GeQeUaliVaWiRQ

AUWicle ChaUacWeUiVaWiRQ
IQWeUSUeWaWiRQ

Figure 2.1: Overview of the systematic review process [106]

ating biased conclusions and sum all the existing evidence in a manner that is fair and
seen to be fair.

The principle of the systematic literature review [85] is to convert the information
collection into a systematic research study; this research study first defines several spe-
cific research questions and then searches for the best answers accordingly. These re-
search questions and search mechanisms (consisting of study selection criteria and data
extraction strategy) are included in a review protocol, a detailed plan to perform the sys-
tematic review. After developing the review protocol, the researchers need to validate
this protocol for further resolving the potential ambiguity.

Following the main stages of the systematic review, we will introduce our review pro-
cedure in four parts: we will first specify the research questions, and then present the
study selection strategy and data extraction framework. In the fourth step, we will show
the validation results of the review protocol. The overview of our systematic review pro-
cess is shown in Figure 2.1.

2.3.1. RESEARCH QUESTIONS

The research questions are the most critical part of the review protocol. The research
questions determine study selection strategy and data extraction strategy. In this review,
our objective is to examine the primary applications of mutation testing and identify
limitations and gaps. Therefore, we can provide guidelines for applying mutation test-
ing and recommendations for future work. To achieve these goals and starting with our
most vital interests, the application perspective of mutation testing, we naturally further
divide it into two aspects: (1) how mutation testing is used and (2) how the related em-
pirical studies are reported. For the first aspect, we aim to identify and classify the main
applications of mutation testing:

2

22 2. A SLR OF HOW MUTATION TESTING SUPPORTS QUALITY ASSURANCE PROCESSES

RQ2.2.1: How is mutation testing used in quality assurance processes 1?

To understand how mutation testing is used, we should first determine in which cir-
cumstances it is used. The usages might range from using mutation testing as a way to
assess how other testing approaches perform or mutation testing might be a building
block of an approach altogether. This leads to RQ2.1.1:

RQ2.1.1: Which role does mutation testing play in quality assurance pro-
cesses?

There is a broad range of quality assurance processes that can benefit from the applica-
tion of mutation testing, e.g., fault localisation and test data generation. RQ1.2 seeks to
uncover these activities.

RQ2.1.2: Which quality assurance process does mutation testing support?

In Jia and Harman’s survey [197] of mutation testing, they found that most approaches
work at the unit testing level. In RQ2.1.3 we investigate whether the application of muta-
tion testing is also mostly done at the unit testing level, or whether other levels of testing
have been also investigated in the literature.

RQ2.1.3: Which test level does mutation testing target?

Jia and Harman [197] have also indicated that mutation testing is most often used in a
white-box testing context. In RQ2.1..4 we explore what other testing strategies can also
benefit from the application of mutation testing.

RQ2.1.4: Which testing strategies does mutation testing support?

For the second aspect, we are going to synthesise empirical evidence related to mutation
testing:

RQ2.2: How are empirical studies related to mutation testing designed
and reported?

A plethora of mutation testing tools exist and have been surveyed by Jia and Har-
man [197]. Little is known which ones are most applied and why these are more popular.
RQ2.2.1 tries to fill this knowledge gap by providing insight into which tools are used
more frequently in a particular context.

RQ2.2.1: Which mutation testing tools are being used?

The mutation tools that we surveyed implement different mutation operators. Also, the
various mutation approaches give different names to virtually the same mutation oper-
ators. RQ2.2.2 explores what mutation operators each method or tool has to offer and
how mutation operators can be compared.

1The quality assurance processes include testing activities and debugging in general. In more specific, the
quality assurance processes include all the daily work responsibilities of test engineers (e.g. designing test
inputs, producing test case values, running test scripts, analyzing results, and reporting results to developers
and managers) [47].

2.3. RESEARCH METHOD

2

23

RQ2.2.2: Which mutation operators are being used?

The equivalent mutant problem, i.e., the situation where a mutant leads to a change that
is not observable in behaviour, is one of the most significant open issues in mutation
testing. Both Jia and Harman [197] and Madeyski et al.[241] highlighted some of the
most remarkable achievements in the area, but we have a lack of knowledge when it
comes to how the equivalent mutant problem is coped with in practice when applying
mutation testing during quality assurance activities. RQ2.2.3 aims to seek answers for
exactly this question.

RQ2.2.3: Which approaches are used to overcome the equivalent mutant prob-
lem when applying mutation testing?

As mutation testing is computationally expensive, techniques to reduce costs are impor-
tant. Selective Mutation and Weak Mutation are the most widely studied cost reduction
techniques [197], but it is unclear which reduction techniques are actually used when
applying mutation testing, which is the exact topic of RQ2.2.4.

RQ2.2.4: Which techniques are used to reduce the computational cost when
applying mutation testing?

To better understand in which context mutation testing is applied, we want to look into
the programming languages that have been used in the experiments. However, also the
size of the case study systems is of interest, as it can be an indication of the maturity of
certain tools. Finally, we are also explicitly looking at whether the case study systems are
available for replication purposes (in addition to the check for availability of the muta-
tion testing tool in RQ2.2.1).

RQ2.2.5: What subjects are being used in the experiments (regarding pro-
gramming language, size, and data availability)?

2.3.2. STUDY SELECTION STRATEGY
Initial Study Selection. We started with search queries in online platforms, including
Google Scholar, Scopus, ACM Portal, IEEE Explore as well as Springer, Wiley, Elsevier
Online libraries, to collect papers containing the keywords “mutation testing" or “mu-
tation analysis" in their titles, abstracts, and keywords. Meanwhile, to ensure the high
quality of the selected papers, we considered the articles published in seven top jour-
nals and ten top conferences (as listed in Table 2.2) dating from 1971 as data sources.
The above 17 venues are chosen because they report a high proportion of research on
software testing, debugging, software quality and validation. Moreover, we excluded ar-
ticle summaries, interviews, reviews, workshops2, panels and poster sessions from the
search. If the paper’s language is not English, we also excluded such a paper. After this
step, 220 papers were initially selected.

Inclusion/Exclusion Criteria. Since we are interested in how mutation testing is ap-
plied in a research context, thereby not excluding industrial practice, we need selection

2In the snowballing procedure, we took the “Mutation Testing” workshop series into consideration, since this
is the closest venue to mutation testing.

2

24 2. A SLR OF HOW MUTATION TESTING SUPPORTS QUALITY ASSURANCE PROCESSES

Table 2.2: Venues involved in study selection

Type Venue Name No. of
papers

After
Applying

Search
queries

No. of
papers

After
Applying

In./Ex.
Criteria

No. of
papers

After
Snow-

balling
procedure

Journal Journal of Empirical Software Engineering (EMSE) 4 3 6
Information and Software Technology (IST) 0 0 3
Journal Software Maintenance and Evolution (JSME) 0 0 0
Software Quality Journal (JSQ) 0 0 2
Journal of Systems and Software (JSS) 17 8 9
Journal on Software Testing, Verification and Reliability (STVR) 33 16 23
Transaction on Software Engineering and Methodology (TOSEM) 3 2 4
Transaction on Reliability (TR) 1 1 1
Transaction on Software Engineering (TSE) 19 9 21

Conference Proceedings Asia Pacific Software Engineering Conference
(APSEC)

0 0 1

International Conference on Automated Software Engineering
(ASE)

7 3 7

European Software Engineering Conference / International Sym-
posium on the Foundations of Software Engineering (ESEC/FSE)

6 1 9

International Symposium on Empirical Software Engineering and
Measurement (ESEM/ISESE)

2 1 3

International Conference on Software Engineering (ICSE) 29 9 22
International Conference on Software Maintenance and Evolution
(ICSME/ICSM)

6 3 9

International Conference on Software Testing, Verification, Valida-
tion (ICST)

45 23 22

International Symposium on Software Reliability Engineering (IS-
SRE)

26 10 20

International Symposium on Software Testing and Analysis (ISSTA) 14 3 12
Proceedings International Conference on Quality Software (QSIC) 8 5 6
Proceedings International Symposium on Search Based Software
Engineering (SSBSE)

0 0 1

Proceedings of the International Conference on Testing Com-
puter Software (TCS)

0 0 1

Workshop International Workshop on Mutation Analysis 0 0 9

Total 220 97 191

Note: the venues marked in bold font are not initially selected, but where added after the snowballing procedure. We listed the venues
alphabetically according to their abbreviations, e.g., EMSE is ahead of IST.

criteria to include the papers that use mutation testing as a tool for evaluating or im-
proving other quality assurance processes and exclude the papers focusing on the de-
velopment of mutation tools and operators, or challenges and open issues for mutation
testing. Moreover, the selected articles should also provide sufficient evidence for an-
swering the research questions. Therefore, we define two inclusion/exclusion criteria
for study selection. The inclusion/exclusion criteria are as follows:

1. The article must focus on the supporting role of mutation testing in the quality as-
surance processes. This criterion excludes the research solely on mutation testing
itself, such as defining mutation operators, developing mutation systems, inves-
tigating ways to solve open issues related to mutation testing and comparisons
between mutation testing and other testing techniques.

2. The article exhibits sufficient evidence that mutation testing is used to support
testing related activities. The sufficient evidence means that the article must clearly
describe how the mutation testing is involved in the quality assurance processes.
The author(s) must state at least one of the following details about the mutation

2.3. RESEARCH METHOD

2

25

testing in the article: mutation tool, mutation operators, mutation score3. This
criterion also excludes theoretical studies on mutation testing.

The first author of this SLR then carefully read the titles and abstracts to check whether
the papers in the initial collection belong to our set of selected papers based on the in-
clusion/exclusion criteria. If it is unclear from the titles and abstracts whether mutation
testing was applied, the entire article especially the experiment part was read as well.
After we have applied the inclusion/exclusion criteria, 97 papers remained.

Snowballing Procedure. After selecting 97 papers from digital databases and apply-
ing our selection criteria, there is still a high potential to miss articles of interest. As
Brereton et al. [85] pointed out, most online platforms do not provide adequate sup-
port for systematic identification of relevant papers. To overcome this shortfall of online
databases, we then adopted both backward and forward snowballing strategies [365] to
find missing papers. Snowballing refers to using the list of references in a paper or the
citations to the paper to identify additional papers [365]. Using the references and the
citations respectively are referred to as backward and forward snowballing [365].

We used the 97 papers as the starter set and performed a backward and forward
snowballing procedure recursively until no further papers could be added to our set.
During the snowballing procedure, we extended the initially selected venues to minimise
the chance of missing related papers. The snowballing process resulted in another 82 ar-
ticles (and five additional venues). The International Workshop on Mutation Analysis
was added during the snowballing procedure.

To check the completeness of the initial study collection, we first ran a reference
check based on Jia et al.’s survey (among 264 papers) as our literature review was ini-
tially motivated from their paper. The results showed that: (1) 5 papers have already
been included in our collection; (2) 3 additional papers that should be included; and (3)
246 papers are excluded. Again, we applied snowballing techniques to the additional
three papers, and the three papers resulted in a total of 12 papers for our final collection
(191 papers in total4).

Furthermore, we ran a sanity check on our final collection to examine how many
papers do not have the keywords “mutation analysis" or “mutation testing" in their ab-
stracts, titles or keywords. The sanity check resulted in 112 papers; 15 papers are missing
in the initial data collection by applying search queries in online platforms. Most of the
missing papers (10 out of 15) (e.g., Offutt et al. [275] and Knauth et al.[213]) are not from
the pre-considered 17 venues. The results of the sanity check indicate that there are
potentials of missing papers based on search queries in online platforms; however, the
snowballing procedure can minimise the risks of missing papers.

The detailed records of each step can be found in our GitHub repository [23].

2.3.3. DATA EXTRACTION STRATEGY
Data extracted from the papers are used to answer the research questions we formu-
lated in Section 2.3.1. Based on our research questions, we draw seven facets of interest
3The studies which merely adopted hand-seeded faults which are not based on a set of mutation operators are

not part of this survey.
4We did not control for double counting here as there are usually additional experiments and further discus-

sion in the extended version.

2

26 2. A SLR OF HOW MUTATION TESTING SUPPORTS QUALITY ASSURANCE PROCESSES

that are highly relevant to the information we need to answer the questions. The seven
facets are: (1) the roles of mutation testing in quality assurance processes; (2) the quality
assurance processes; (3) the mutation tools used in experiments; (4) the mutation op-
erators used in experiments; (5) the description of equivalent mutant problem; (6) the
description of cost reduction techniques for mutation testing; (7) the subjects involved
in experiments. An overview of these facets is given in Table 2.3.

For each facet, we first read the corresponding details in each paper and extracted
the exact text from the papers. During the reading procedure, we started by identifying
and classifying attributes of interest under each facet and assigned values to each at-
tribute. The values of each attribute were generalised and modified during the reading
process: we merged some values or divided one into several smaller groups. In this way,
we generated an attribute framework, and then we used the framework to characterise
each paper. Therefore, we can show quantitative results for each attribute to support
our answers. Moreover, the attribute framework can also be further used for validation
and replication of the review work. To categorise the attributes for each paper, all the
abstracts, introductions, empirical studies and conclusions of the selected papers were
carefully read. If these sections were not clear or were somehow confusing, we also took
other sections from the paper into consideration. Furthermore, for categorising the test
level attribute, to minimise misinterpretations of the original papers, we looked beyond
the aforementioned sections to determine the test level (i.e., “unit", “module", “integra-
tion", “system" and “acceptance" [47]). In particular, we used the former five words as
keywords to search for the entire paper. If this search yielded no results, we did not nec-
essarily categorise the paper as “n/a". Instead, we read the entire paper, and if a study
deals with a particular type of testing, e.g., testing of the grammar of a programming lan-
guage or spreadsheet testing, we placed the paper in the category “others". If the paper
lacks any description of the test level, we classified the test level as “n/a".
(1) roles of mutation testing in quality assurance processes:

The first facet concerns the role of mutation testing in quality assurance processes
drawn from RQ2.1.1. We identified two classes for the function of mutation testing: as-
sessment and guide. When mutation testing is used as a measure of test effectiveness
concerning fault-finding capability, we classify this role as “assessment". While for the
“guide" role, mutation testing is adopted to improve the testing effectiveness as guid-
ance, i.e., it is an inherent part of an approach.

To identify and classify the role of mutation testing, we mainly read the description of
mutation testing in the experiment part of each paper. If we find the phrases which have
the same meanings as “evaluate fault-finding ability" or “assess the testing effectiveness"
in a paper, we then classify the paper into the class of “assessment". In particular, when
used as a measure of testing effectiveness, mutation testing is usually conducted at the
end of the experiment; this means mutation testing is not involved in the generation or
execution of test suites. Unlike the “assessment" role, if mutation testing is adopted to
help to generate test suites or run test cases, we then classify the paper into the “guide"
set. In this case, mutation testing is not used in the final step of the experiment.
(2) quality assurance processes:

The second facet focuses on quality assurance processes. Three attributes are rele-
vant to quality assurance processes: the categories of quality assurance processes (RQ2.1.2),

2.3. RESEARCH METHOD

2

27

test levels (RQ2.1.3) and testing strategies (RQ2.1.4). To identify the categories of quality
assurance processes, we group similar quality assurance processes based on informa-
tion in title and abstract. The quality assurance processes we identified so far consist of
12 classes: test data generation, test-suite reduction/selection, test strategy evaluation,
test case minimisation, test case prioritisation, test oracle, fault localisation, program
repairing, development scheme evaluation, model clone detection, model review, and
fault tolerance. We classify the papers by reading the description appeared in title and
abstract.

For test level, the values are based on the concept of test level and the authors’ spec-
ification. More precisely, we consider five test levels: unit, integration, system, others,
and n/a. To characterise the test level, we search the exact words “unit", “integration",
“system" in the article, as these four test levels are regular terms and cannot be replaced
by other synonyms. If there is no relevant result after searching in a paper, we then clas-
sify the paper’s test level into “n/a", i.e., no specification regarding the test level. Also,
for the paper which is difficult for us to categorise into any of the four phases (e.g., test-
ing of the grammar of a programming language and spreadsheet testing) we mark this
situation as “others".

For testing strategies, a coarse-grained classification is adequate to gain an overview
of the distribution of testing strategies. We identified five classes according to the test de-
sign techniques: structural testing, specification-based testing, similarity-based testing,
hybrid testing and others [163, 346]. For the structural testing and specification-based
testing classes, we further divided the classes into traditional and enhanced, based on
whether other methods improve the regular testing.

To be classified into the “structural testing” class, the paper should either contain the
keywords “structure-based", “code coverage-based" or “white box”, or use structural test
design techniques, such as statement testing, branch testing, and condition testing. For
the “specification-based testing" class, the articles should either contain the keywords
“black box", “requirement-based" or “specification-based", or use specification-based
test design techniques, such as equivalence partitioning, boundary value analysis, deci-
sion tables and state transition testing. The similarity-based method aims to maximise
the diversity of test cases to improve the test effectiveness; this technique is mainly based
on test case relationship rather than software artefacts. Therefore, similarity-based test-
ing does not belong to either structural testing or specification-based testing.

The grey-box testing combines structural testing and specification testing. Besides,
several cases are using static analysis, code review or other techniques which cannot fit
the above classes; in such situations, we mark the value as “others".

Furthermore, to classify the “enhanced" version of structural and specification-based
testing we rely on whether other testing methods were adopted to improve the tradi-
tional testing. For instance, Whalen et al. [362] combined the MC/DC coverage met-
ric with a notion of observability to ensure the fault propagation conditions. Papadakis
and Malevris [292] proposed an automatic mutation test case generation via dynamic
symbolic execution. To distinguish such instances from the traditional structural and
specification-based testing, we marked them as “enhanced".
(3) mutation tools used in experiments:

For the mutation tools (derived from RQ2.2.1), we are interested in their types, but

2

28 2. A SLR OF HOW MUTATION TESTING SUPPORTS QUALITY ASSURANCE PROCESSES

also in their availability. Our emphasis on tool availability is instigated to address possi-
ble replication of the studies. The values of “Yes" or “No" for the tool availability depends
on whether the mutation tool is open to the public. The tool type intends to provide fur-
ther analysis of the mutation tool, which is based on whether the tool is self-developed
and whether the tool itself is a complete mutation testing system. We identified five types
of mutation tools: existing, partially-based, self-written, manual and n/a. The “existing”
tool must be a complete mutation testing system, while “partially-based" means these
tools are used as a base or a framework for mutation testing. The example for “partially-
based" tools are EvoSuite [145], jFuzz [193], TrpAutoRepair [299], and GenProg [224]. The
self-written tool category represents those tools that have been developed by the authors
of the study. The “manual" value means the mutants were generated manually accord-
ing to mutation operators in the studies. Besides, we defined “n/a" value in addition to
the “tool types" attribute; the value of “n/a" marks the situation where lacks of a descrip-
tion of mutation tools including tool names/citations and whether manually generated
or not.

(4) mutation operators used in experiments: As for the mutation operators (related
to RQ2.2.2), we focus on two attributes: description level and generalised classification.
The former is again designed to assess the repeatability issue related to mutation testing.
The description degree depends on the way the authors presented the mutation opera-
tors used in their studies, consisting of three values: “well-defined", “not sufficient" and
“n/a". If the paper showed the complete list of mutation operators, then we classify such
a paper into “well-defined". The available full list includes two main situations: (1) the
authors listed each name of mutation operator(s) and/or specified how the mutation op-
erators make changes to programs in the articles; (2) the studies adopted existing tools
and mentioned the used mutation operator (including the option where all or the de-
fault set of mutation operators provided by that tool were used). Thus, the well-defined
category enables the traceability of the complete list of mutation operators. Instead, if
there is some information about the mutation operators in the article but not enough
for the replication of the whole list of mutation operators, then we classify the paper into
“not sufficient". The typical example is that the author used such words as “etc.", “such
as" or, “e.g." in the specification of the mutation operators; this indicates that only some
mutation operators are explicitly listed in the paper, but not all. Finally, we use the label
“n/a" when no description of the mutation operators was given in the paper at all.

To compare the mutation operators from different tools for different programming
languages, and to analyse the popularity of involved mutation operators amongst the
papers, we collected the information about mutation operators mentioned in the arti-
cles. Notably, we only consider the articles which are classified as “well-defined". We ex-
cluded the papers with “not sufficient" label as their lists of mutation operators are not
complete as this might result in biased conclusions based on incomplete information.
Moreover, during the reading process, we found that different mutation testing tools
use different naming conventions for their mutation operators. For example, in MuJava
[240], the mutation operator which replaces relational operators with other relational
operators is called “Relational Operator Replacement", while that is named “Condition-
als Boundary Mutator" in PIT [3]. Therefore, we saw a need to compose a generalised
classification of mutation operators, which enables us to more easily compare mutation

2.3. RESEARCH METHOD

2

29

operators from different tools or definitions.
The method we adopted here to generate the generalised classification is to group

the similar mutation operators among all the existing mutation operators in the litera-
ture based on how they mutate the programs. Firstly, mutation testing can be applied
to both program source code and program specification. Thus, we classified the muta-
tion operators into two top-level groups: program mutation and specification mutation
operators, in a similar vein to Jia and Harman’s survey. As we are more interested in pro-
gram mutation, we further analysed this area and summarised different mutation oper-
ators based on literature. More specifically, we first followed the categories and naming
conventions of MuJava [237, 238] and Proteum [43] as their mutation operator groups
are more complete than the others. Based on the mutation operator groups from Mu-
Java and Proteum, we further divided the program mutation operators into three sub-
categories: expression-level, statement-level, and others. The expression-level mutation
operators focus on the inner components of the statements, i.e., operators (method-level
mutation operators in MuJava [238]) and operands (Constant and Variable Mutations in
Proteum [43]), while the statement-level ones mutate at least a single statement (State-
ment Mutations in Proteum [43]). As we are interested in a more generalised classifica-
tion independent of the programming language, we came up with the class of “others"
to include mutation operators related to the programming language’s unique features,
e.g., Objected-Oriented specific and Java-specific mutation operators (Class Mutation
in MuJava [237]). It is important to note that our generalised classification of mutation
operators aims to provide an overall distribution of different mutation operator groups.
Thus, we did not look into lower-level categories. If the paper used one of the mutation
operators in one group, we assign the group name to the paper. For example, while the
PIT tool only adopts a small number of arithmetic operators [3], we still assign PIT with
the “arithmetic operator".

Our generalised classification of mutation operators is as follows:

Listing 1 Generalised classification of mutation operators

1. Specification mutation

2. Program mutation

(a) Expression-level

i. arithmetic operator: it mutates the arithmetic operators (including ad-
dition “+", subtraction “°", multiplication “*", division “/", modulus “%",
unary operators “+", “°", and short-cut operators “++", “°°")1 by replace-
ment, insertion or deletion.

ii. relational operator: it mutates the relational operators (including “>",
“>=", “<", “<=", “==", “!=") by replacement.

iii. conditional operator: it mutates the conditional operators (including
and “&", or “|", exclusive or “ˆ", short-circuit operator “&&", “k", and nega-
tion “!") by replacement, insertion or deletion.

1The syntax of these operators might vary slightly in different languages. Here we just used the operators in
Java as an example. So as the same in (ii) - (vi) operators.

2

30 2. A SLR OF HOW MUTATION TESTING SUPPORTS QUALITY ASSURANCE PROCESSES

iv. shift operator: it mutates the shift operators (including “>>", “<<" and
“>>>") by replacement.

v. bitwise operator: it mutates the bitwise operators (including bitwise and
“&", bitwise or “|", bitwise exclusive or “ˆ" and bitwise negation “˜") by
replacement, insertion or deletion.

vi. assignment operator: it mutates the assignment operators (including the
plain operator “=" and short-cut operators “+=", “° =", “*=", “/=", “%=",
“&=", “|=", “ˆ=", “<<=", “>>=", “>>>=") by replacement. Besides, the
plain operator “=" is also changed to “==" in some cases.

vii. absolute value: it mutates the arithmetic expression by preceding unary
operators including ABS (computing the absolute value), NEGABS (com-
pute the negative of the absolute value) and ZPUSH (testing whether the
expression is zero. If the expression is zero, then the mutant is killed; other-
wise execution continues and the value of the expression is unchanged)2.

viii. constant: it changes the literal value including increasing/decreasing the
numeric values, replacing the numeric values by zero or swapping the
boolean literal (true/false).

ix. variable: it substitutes a variable with another already declared variable
of the same type and/or of a compatible type.3

x. type: it replaces a type with another compatible type including type cast-
ing.4

xi. conditional expression: it replaces the conditional expression by true/false

so that the statements following the conditional always execute or skip.

xii. parenthesis: it changes the precedence of the operation by deleting, adding
or removing the parentheses.

(b) Statement-level

i. return statement: it mutates return statements in the method calls in-
cluding return value replacement or return statement swapping.

ii. switch statement: it mutates switch statements by making different
combinations of the switch labels (case/default) or the corresponding
block statement.

iii. if statement: it mutates if statements including removing additional
semicolons after conditional expressions, adding an else branch or re-
placing last else if symbol to else.

iv. statement deletion: it deletes statements including removing the method
calls or removing each statement5.

2The definition of this operator is from the Mothra[210] system. In some cases, this operator only applies the
absolute value replacement.

3The types of the variables varies in different programming languages.
4The changes between the objects of the parent and the child are excluded which belongs to “OO-specific"
5To maintain the syntactical validity of the mutants, semicolons or other symbols, such as continue in For-

tran, are retained.

2.3. RESEARCH METHOD

2

31

v. statement swap: it swaps the sequences of statements including rotating
the order of the expressions under the use of the comma operator, swap-
ping the contained statements in if-then-else statements and swap-
ping two statements in the same scope.

vi. brace: it moves the closing brace up or down by one statement.
vii. goto label: it changes the destination of the goto label.

viii. loop trap: it introduces a guard (trap after nth loop iteration) in front of
the loop body. The mutant is killed if the guard is evaluated the nth time
through the loop.

ix. bomb statement: it replaces each statement by a special Bomb() function.
The mutant is killed if the Bomb() function is executed which ensures each
statement is reached.

x. control-flow disruption (break/continue): it disrupts the normal control
flow by adding, removing, moving or replacing continue/break labels.

xi. exception handler: it mutates the exception handlers including changing
the throws, catch or finally clauses.

xii. method call: it changes the number or position of the parameters/argu-
ments in a method call, or replace a method name with other method
names that have the same or compatible parameters and result type.

xiii. do statement: it replaces do statements with while statements.
xiv. while statement: it replaces while statements with do statements.

(c) Others

i. OO-specific: the mutation operators related to O(bject)-O(riented) Pro-
gramming features [237], such as Encapsulation, Inheritance, and Poly-
morphism, e.g. super keyword insertion.

ii. SQL-specific: the mutation operators related to SQL-specific features [342],
e.g. replacing SELECT to SELECT DISTINCT.

iii. Java-specific
6

: the mutation operators related to Java-specific features [237]
(the operators in Java-Specific Features), e.g. this keyword insertion.

iv. JavaScript-specific: the mutation operators related to JavaScript-specific
features [252] (including DOM, JQUERY, and X MLH TTPREQUEST opera-
tors), e.g. var keyword deletion.

v. SpreadSheet-specific: the mutation operators related to SpreadSheet-specific
features [61], e.g. changing the range of cell areas.

vi. AOP-specific: the mutation operators related to A(spect)-O(riented)-P(rogramming)
features [110, 372], e.g. removing pointcut.

vii. concurrent mutation: the mutation operators related to concurrent pro-
gramming features [182, 183], e.g. replacing notifyAll() with notify().

viii. Interface mutation: the mutation operators related to Interface-specific
features [184, 375], suitable for use during integration testing.

6This set of mutation operators originated from Java features but not limited to Java language, since other
languages can share certain features, e.g., this keyword is also available in C++ and C#, and static modifier
is supported by C and C++ as well.

2

32 2. A SLR OF HOW MUTATION TESTING SUPPORTS QUALITY ASSURANCE PROCESSES

(5) description of the equivalent mutant problem & (6) description of cost reduction
techniques for mutation testing:

The fifth and sixth facets aim to show how the most significant problems are coped
with when applying mutation testing (related to RQ2.2.3 and RQ2.2.4 respectively). We
composed the list of techniques based on both our prior knowledge and the descriptions
given in the papers. We identified seven methods for dealing with the equivalent mutant
problem and five for reducing computational cost except for “n/a" set (more details are
given in Table 2.3).

For the equivalent mutant problem, we started by searching the keywords “equiv-
alen*" and “equal" in each paper to target the context of the equivalent mutant issue.
Then we extracted the corresponding text from the articles. If there are no relevant find-
ings in a paper, we mark this article as “n/a" which means the authors did not mention
how they overcame the equivalent mutant problem. Here, it should be noted that we
only considered the description related to the equivalent mutant problem given by the
authors; this means we excluded the internal heuristic mechanisms adopted by the ex-
isting tools if the author did not point out such internal approaches. For example, the
tool of JAVALANCHE [313] ranks mutations by impact to help users detect the equivalent
mutants. However, if the authors who used JAVALANCHE did not specify that internal
feature, we do not label the paper into the class that used the approach of “ranking the
mutations".

For the cost reduction techniques, we read the experiment part carefully to extract
the reduction mechanism from the papers. Also, we excluded runtime optimisation and
selective mutation. The former one, runtime optimisation, is an internal optimisation
adopted during the tool implementation, therefore such information is more likely to
be reported in the tool documentation. We did not consider the runtime optimisation
to avoid incomplete statistics. As for the second one, selective mutation, we assume it is
adopted by all papers since it is nearly impossible to implement and use all the operators
in practice. If a paper does not contain any description of the reduction methods in the
experiment part, we mark this article as “n/a".
(7) subjects involved in the experiment:

For the subject programs in the evaluation part, we are interested in three aspects:
programming language, size, and data availability. From the programming language, we
can obtain an overall idea of how established mutation testing is in each programming
language domain and what the current gap is. From the subject size, we can see the
scalability issue related to mutation testing. From the data availability situation, we can
assess the replicability of the studies.

For the programming language, we extracted the programming language of the sub-
jects involved in the experiment in these articles, such as Java, C, SQL, etc. If the pro-
gramming language of the subject programs is not clearly pointed out, we mark it as
“n/a". Note, more than one languages might be involved in a single experiment.

For the subject size, we defined four categories according to the lines of code (LOC):
preliminary, small, medium and large. If the subject size is less than 100 LOC, then we
classify it into the “preliminary" category. If the size is between 100 to 10K LOC, we con-
sider it “small", while between 10K and 1M LOC we appraised it as “medium". If the size
is greater than 1M LOC, we consider it as “large". Since our size scale is based on LOC,

2.3. RESEARCH METHOD

2

33

if the LOC of the subject is not given, or other metrics are used, we mark it as “n/a”. To
assign the value to paper, we always take the biggest subjects used in the papers.

For the data available, we defined two classes: Yes and No. “Yes" means all subjects
in the experiments can be openly accessible; this can be identified either from the key-
words “open source", SIR [126], GitHub7, SF100 [146] or SourceForge8, or from the
open link provided by the authors. It is worth noting that if one of the subjects used in a
study is not available, we classify the paper as “No".

The above facets of interest and corresponding attributes and detailed specification
of values are listed in Table 2.3.

Facet Attribute Value Description

Roles classification assessment assessing the fault-finding effectiveness
guide improving other quality assurance processes as guidance

Quality assurance processes category test data generation creating test input data
test-suite reduction/selection reducing the test suite size while maintaining its fault detection abil-

ity
test strategy evaluation evaluating test strategies by carrying out the corresponding whole

testing procedure, including test pool creation, test case selection
and/or augmentation and testing results analysis.

test-case minimisation simplifying the test case by shortening the sequence and removing
irrelevant statements

test case prioritisation reordering the execution sequence of test cases
test oracle generating or selecting test oracle data
fault localisation identifying the detective part of a program given the test execution

information
program repairing generating patches to correct detective part of a program
development scheme evaluation evaluating the practice of software development process via observa-

tional studies or controlled experiments, such as Test-Driven Devel-
opment (TDD)

model clone detection identifying similar model fragments within a given context
model review determining the quality of the model at specification level using static

analysis techniques
fault tolerance assessing the ability of the system to continue operating properly in

the event of failure

test level unit quality assurance processes focus on unit level. A typical example of
unit testing includes: using unit testing tools, such as Junit and Nunit,
intra-method testing, intra-class testing.

integration quality assurance processes focus on integration level. A typical ex-
ample of integration testing includes: caller/callee and inter-class
testing

system quality assurance processes focus on system level. A typical examples
of system testing include: high-level model-based testing techniques
and high-level specification abstraction methods

others quality assurance processes are not related to source code. A typical
example includes: grammar.

n/a no specification about the testing level in the article.

testing strategy structural white-box testing uses the internal structure of the software to derive
test cases, such as statement testing, branch testing, and condition
testing

enhanced structural adopting other methods to improve the traditional structural testing,
mutation-based techniques, information retrieval knowledge, obser-
vation notations and assertion coverage

specification-based viewing software as a black box with input and output, such as equiv-
alence partitioning, boundary value analysis, decision tables and
state transition testing

enhanced specification-based adopting other methods to improve the traditional specification-
based testing, such as mutation testing.

similarity-based maximising the diversity of test cases to improve the test effectiveness
grey-box combining structural testing and specification testing together
others using static analysis, or focusing on other testing techniques which

cannot fit in above six classes

Mutation Tools availability Yes/No Yes: open to the public; No: no valid open access

type existing tool a complete mutation testing system
partially-based used as a base or framework for mutation testing
self-written developed by the authors and the open link of the tool is also acces-

sible
manual generating mutants manually based on the mutation operators
n/a no description of the adopted mutation testing tool

Mutation Operators description Level well-defined the complete list of mutation operators is available
not sufficient the article provides some information about mutation operators but

the information is not enough for replication

7https://github.com/
8https://sourceforge.net/

2

34 2. A SLR OF HOW MUTATION TESTING SUPPORTS QUALITY ASSURANCE PROCESSES

n/a no description of the mutation operators

generalised classification refer to Listing 1 refer to Listing 1

Equivalence Solver methods not killed as equivalent treating mutants not killed as equivalent
not killed as non-equivalent treating mutants not killed as non-equivalent
no investigation no distinguishing between equivalent mutants and non-equivalent

ones
manual manual investigation
model checker using model checker to remove functionally equivalent mutants
reduce likelihood generating mutants that are less likely to be equivalent, such as us-

ing behaviour-affecting variables, carefully-designed mutation oper-
ators, and constraints binding

deterministic model adopting the deterministic model to make the equivalence problem
decidable

n/a no description of mutant equivalence detector

Reduction Technique methods mutant sample randomly select a subset of mutants for testing execution based on
fixed selection ratio

fixed number select a subset of mutants based on a fixed number
weak mutation compare internal state of the mutant and the original program im-

mediately after the mutated statement(s)
higher-order reduce the number of mutants by selecting higher-order mutants

which contain more than one faults
selection strategy generate fewer mutants by selecting where to mutate based on a ran-

dom algorithm or other techniques
n/a no description of reduction techniques (except for runtime optimisa-

tion and selective mutation)

Subject language Java, C, C#, etc. various programming languages

size (maximum) preliminary <100 LOC
small 100 ª 10K LOC
medium 10K ª 1M LOC
large > 1M LOC
n/a no description of program size regarding LOC

availability Yes/No Yes: open to the public; No: no valid open access

Table 2.3: Attribute framework

2.3.4. REVIEW PROTOCOL VALIDATION
The review protocol is a critical element of a systematic literature review and researchers
need to specify and carry out procedures for its validation [85]. The validation proce-
dure aims to eliminate the potential ambiguity and unclear points in the review protocol
specification. In this review, we conduct the review protocol validation among the three
authors. We also used the results to improve our review protocol. The validation focuses
on selection criteria and attribute framework, including the execution of two pilot runs
of study selection procedure and data extraction process.

SELECTION CRITERIA VALIDATION.
We performed a pilot run of the study selection process, for which we randomly gen-
erated ten candidate papers from selected venues (including articles out of our selec-
tion scope) and carried out the paper selection among the three authors independently
based on the inclusion/exclusion criteria. After that, the three authors compared and
discussed the selection results. The results show that for 9 out of 10 papers, the authors
had an immediate agreement. The three authors discussed the one paper that showed
disagreement, leading to a revision of the first inclusion/exclusion criterion. In the first
exclusion criterion, we added “solely” to the end of the sentence “...This criterion ex-
cludes the research on mutation testing itself...". By adding “solely" to the first criterion,
we include articles whose main focus is mutation testing, but also cover the application
of mutation testing.

2.4. REVIEW RESULTS

2

35

ATTRIBUTE FRAMEWORK VALIDATION.
To execute the pilot run of the data extraction process, we randomly select ten candidate
papers from our selected collection. These 10 papers are classified by all three authors
independently using the attribute framework that we defined earlier. The discussion
that follows from this process leads to revisions of our attribute framework. Firstly, we
clarified that the information extracted from the papers must have the same meaning
as described by the authors; this mainly means that we cannot further interpret the in-
formation. If the article does not provide any clear clue for a certain attribute, we use
the phrase “not specified" (“n/a") to mark this situation. By doing so, we minimise the
potential misinterpretation of the articles.

Secondly, we ensured that the values of the attribute framework are as complete as
possible so that for each attribute we can always select a value. For instance, when ex-
tracting quality assurance processes information from the papers, we can simply choose
one or several options of the 12 categories provided by the predefined attribute frame-
work. The purpose of providing all possible values to each attribute is to assist data ex-
traction in an unambiguous and trustworthy manner. Through looking at the definitions
of all potential values for each attribute, we can easily target unclear or ambiguous points
in data extraction strategy. If there are missing values for certain attributes, we can only
add the additional data definition to extend the framework. The attribute framework can
also be of clear guideline for future replication. Furthermore, we can then present quan-
titative distributions for each attribute in our later discussion to support our answers to
research questions.

To achieve the above two goals, we made revisions to several attributes as well as
values. The specified modifications are listed as follows:

Mutation Tools: Previously, we combined tool availability and tool types by defining
three values: self-written, existing and not available; this is not clear to distinguish avail-
able tools from unavailable ones. Therefore, we further defined two attributes, i.e., tool
availability and tool types.

Mutation Operators: We added “description level" to address the interest of how
mutation operators are specified in the articles; this also helps in the generalisation of
mutation operator classification.

Reduction Techniques: We added the “fixed number" value to this attribute which
means the fixed number of selected mutants.

Subjects: We changed the values of “data availability" from “open source", “indus-
trial" or “self-defined" to “Yes" or “No". Since the previous definitions cannot distinguish
between available and unavailable datasets.

2.4. REVIEW RESULTS
After developing the review protocol, we conducted the task of article characterisation
accordingly. Given the attribute assignment under each facet, we are now at the stage
of interpreting the observations and reporting our results. In the following section, we
discuss our review results following the sequence of our research questions. While Sec-
tion 2.4.1 deals with the observations related to how mutation testing is applied (RQ2.1),
Section 2.4.2 will present the RQ2.2-related discussion. For each sub-research question,
we will first show the distribution of the relevant attributes and our interpretation of the

2

36 2. A SLR OF HOW MUTATION TESTING SUPPORTS QUALITY ASSURANCE PROCESSES

Table 2.4: Summary of quality assurance processes

Testing Activity
No. of papers No. of papers

No. of papersclassified as classified as
“assessment" “guide"

test data generation 38 36 75
test strategy evaluation 63 6 70
test oracle 13 5 18
test case prioritisation 11 6 17
test-suite selection/reduction 10 5 15
fault localisation 8 4 12
program repairing 2 1 3
test case minimisation 1 1 2
fault tolerance 1 0 1
development scheme evaluation 0 1 1
model clone detection 1 0 1
model review 1 0 1

Total 134 57 191

results (marked as Observation). Each answer to a sub-research question is also sum-
marised at the end. More detailed characterisations results of all the surveyed papers are
presented in our GitHub repository [23].

2.4.1. RQ2.1: HOW IS MT USED IN QUALITY ASSURANCE PROCESSES?
RQ2.1.1 & RQ2.1.2: WHICH ROLE DOES MUTATION TESTING PLAY IN EACH QUALITY AS-
SURANCE PROCESS?
OBSERVATION.
We opt to discuss the two research questions RQ2.1.1 and RQ2.1.2 together, because
it gives us the opportunity to analyse per quality assurance (e.g., test data generation)
whether mutation testing is used as a way to guide the technique, or whether mutation
testing is used as a technique to assess some (new) approach. Consider Table 2.4, in
which we report the role mutation testing plays in the two columns “Assessment" and
“Guide" (see Table 2.3 for the explanation about our attribute framework), while the
quality assurance processes are projected onto the rows. The table is then populated
with our survey results, with the additional note that some papers belong to multiple
categories.

As Table 2.4 shows, test data generation and test strategy evaluation occupy the ma-
jority of quality assurance processes (accounting for 75.9%) and test suite reduction/se-
lection (7.9%). Only two instances studied test-case minimisation; this shows mutation
testing has not been widely used to simplify test cases by shortening the test sequence
and removing irrelevant statements.

As the two roles (assessment and guide) are used quite differently depending on the
quality assurance processes, we will discuss them separately. Also, for the “guide” role,

2.4. REVIEW RESULTS

2

37

for which we see an increasing number of applications in recent decades, we find a num-
ber of hints and insights for future researchers to consider, which explains why we will
analyse this part in a more detailed way when compared to the description of mutation
testing as a tool for assessment.

(1) Assessment.
We observed that mutation testing mainly serves as an assessment tool to evaluate

the fault-finding ability of the corresponding test or debug techniques (70.2%) as it is
widely considered as a “high end" test criterion [47]. To this aim, mutation testing typi-
cally generates a significant number of mutants of a program, which are sometimes also
combined with natural defects or hand-seeded ones. The results of the assessment are
usually quantified as metrics of fault-finding capability: mutation score (or mutation
coverage, mutation adequacy) [51, 53] and killed mutants [76, 107] are the most com-
mon metrics in mutation testing. Besides, in test-case prioritisation, the Average Per-
centage of Faults Detected (APFD) [52, 306], which measures the rate of fault detection
per percentage of test suite execution, is also popular.

Amongst the papers in our set, we also found 19 studies that performed mutant anal-
ysis, which means that the researchers tried to get a better understanding about muta-
tion faults, e.g., which faults are more valuable in a particular context. A good example of
this mutant analysis is the hard-mutant problem investigated by Czemerinski et al. [108]
where they analysed the failure rate for the hard-to-kill mutants (killed by less than 20%
of test cases) using the domain partition approach.

(2) Guide.
To provide insight into how mutation testing acts as guidance to improve testing

methods per quality assurance process, we will highlight the most significant research
efforts to demonstrate why mutation testing can be of benefit as a building block to guide
other quality assurance processes. In doing so, we hope the researchers in this field can
learn from the current achievements so as to explore other interesting applications of
mutation testing in the future.

Firstly, let us start with test data generation, which attracts most interest when mu-
tation testing is adopted as a building block (36 instances). The main idea of mutation-
based test data generation is to generate test data that can effectively kill mutants. For
automatic test data generation, killing mutants serves as a condition to be satisfied by
test data generation mechanisms, such as constraint-based techniques and search-based
algorithms; in this way, mutation-based test data generation can be transformed into the
structural testing problem. The mutation killable condition can be classified into three
steps as suggested by Offutt and Untch [277]: reachability, necessity, and sufficiency.
When observing the experiments contained in the papers that we surveyed (except the
model-based testing), we see that with regard to the killable mutant condition most pa-
pers (73.3%) are satisfied with a weak mutation condition (necessity), while a strong mu-
tation condition (sufficiency) appears less (33.3%). The same is true when comparing
first-order mutants (93.3%) to higher-order mutants (6.7%). Except for the entirely au-
tomatic test data generation, Baudry et al.[67–69] focused on the automation of the test
case enhancement phase: they optimised the test cases regarding mutation score via ge-
netic and bacteriological algorithms, starting from an initial test suite. Von Mayrhauser

2

38 2. A SLR OF HOW MUTATION TESTING SUPPORTS QUALITY ASSURANCE PROCESSES

et al.[356] and Smith and Williams[324] augmented test input data using the require-
ment of killing as many mutants as possible. Compared to the existing literature survey
of Hanh et al. [170], which shed light on mutation-based test data generation, we cover
more studies and extend their work to 2015.

The second-most-frequent use cases when applying mutation testing to guide the
testing efforts come from test case prioritisation (6 instances) and test strategy eval-
uation (6 instances). For test case prioritisation, the goal is to detect faults as early
as possible in the regression testing process. The incorporation of measures of fault-
proneness into prioritisation techniques is one of the directions to overcome the lim-
itation of the conventional coverage-based prioritisation methods. As relevant substi-
tutes of real faults, mutants are used to approximate the fault-proneness capability to
reschedule the testing sequences. Qu et al. [300] ordered test cases according to prior
fault detection rate using both hand-seeded and mutation faults. Kwon et al. [221] pro-
posed a linear regression model to reschedule test cases based on Information Retrieval
and coverage information, where mutation testing determines the coefficients in the
model. Moreover, Rothermel et al. [306, 307] and Elbaum et al. [131] compared differ-
ent approaches of test-case prioritisation, which included the prioritisation in order of
the probability of exposing faults estimated by the killed mutant information. In Qi et
al. [299]’s study, they adopted a similar test-case prioritisation method to improve patch
validation during program repairing.

Zooming in on the test strategy evaluation (6 instances), we observe, on the one
hand, the idea of incorporating an estimation of fault-exposure probability into test data
adequacy criteria intrigued some researchers. Among them are Chen et al. [97]: in their
influential work they examined the fault-exposing potential (FEP) coverage adequacy
which is estimated by mutation testing with four software testers to explore the cost-
effectiveness of mutation testing for manually augmenting test cases. Their results indi-
cate that mutation testing was regarded as an effective but relatively expensive technique
for writing new test cases.

When it comes to the test oracle problem (5 instances), mutation testing can also be
of benefit for driving the generation of assertions, as the prerequisite for killing the mu-
tant is to distinguish the mutant from the original program. In Fraser and Zeller [150]’s
study, they illustrated how they used mutation testing to generate test oracles: asser-
tions, as commonly used oracles, are generated based on the trace information of both
the unchanged program and the mutants recorded during the executions. First, for each
difference between the runs on the original program and its mutants, the corresponding
assertion is added. After that, these assertions are minimised to find a sufficient subset
to detect all the mutants per test case; this becomes a minimum set covering problem.
Besides, Staats et al. [326] and Gay et al. [155] selected the most “effective" oracle data by
ranking variables (trace data) based on their killed mutants information.

Mutation-based test-suite reduction (5 instances) relies on the number of killed mu-
tants as a heuristic to perform test-suite reduction, instead of the more frequently used
traditional coverage criteria, e.g., statement coverage. The intuition behind this idea is
that the reduction based on the mutation faults can produce a better-reduced test suite
with less or no loss in fault-detection capability. The notable examples include an em-
pirical study carried out by Shi et al. [319] who compared the trade-offs among various

2.4. REVIEW RESULTS

2

39

test-suite reduction techniques based on statement coverage and killed mutants.
As for the fault localisation (4 instances), the locations of mutants are used to as-

sist the localisation of “unknown" faults (the faults which have been detected by at least
one test case, but that have still to be located [290]). The motivation of this approach is
based on the following observation: “Mutants located on the same program statements
frequently exhibit a similar behaviour" [290]. Thus, the identification of an “unknown"
fault could be obtained thanks to a mutant at the same (or close) location. Taking advan-
tage of the implicit link between the behaviour of “unknown" faults with some mutants,
Murtaza et al. [260] used the traces of mutants and prior faults to train a decision tree
to identify the faulty functions. Also, Papadakis et al. [290, 291] and Moon et al. [253]
ranked the suspiciousness of “faulty" statements based on their passing and failing test
executions of the generated mutants.

From the aforementioned guide roles of the quality assurance processes, we can see
that mutation testing is mainly used as an indication of the potential defects: either (1)
to be killed in test data generation, test case prioritisation, test-suite reduction, and test
strategy evaluation, or (2) to be suspected in the fault localisation. In most cases, mu-
tation testing serves as where-to-check constraints, i.e., introducing a modification in
a certain statement or block. In contrast, only four studies applied mutation testing to
solving the test oracle problem, which targets the what-to-check issue. The what-to-
check problem is not an issue unique to mutation testing, but rather an inherent chal-
lenge of test data generation. As mentioned above, mutation testing cannot only help
in precisely targeting at where to check but also suggesting what to check for [150] (see
the first recommendation labelled as R1 in Section 2.4.4). In this way, mutation testing
could be of benefit to improve the test code quality.

After we had analysed how mutation testing is applied to guide various quality as-
surance processes, we are now curious to better understand how these mutation-based
testing methods were evaluated, especially because mutation testing is commonly used
as an assessment tool. Therefore, we summed up the evaluation fault types among the
articles labelled as “guide" in Table 2.5. We can see 43 cases (75.4%), which is the ad-
dition of the first and the third rows in Table 2.5 (39+ 4), still adopted mutation faults
to assess the effectiveness. Among these studies, four instances [155, 172, 232, 326] re-
alised the potentially biased results caused by the same set of mutants being used in both
guidance and assessment. They partitioned the mutants into different groups and used
one as evaluation set. Besides, one study [382] used a different mutation tool, while the
other [184] adopted different mutation operators to generate mutants intending to elim-
inate bias. These findings signal an open issue: how to find an adequate fault set instead
of mutation faults to effectively evaluate mutation-based testing methods? (see the sec-
ond recommendation labelled as R2 in Section 2.4.4) Although hand-seeded faults and
real bugs could be an option, searching for such an adequate fault set increases the dif-
ficulty when applying mutation testing as guidance.

SUMMARY.
Test data generation and test strategy evaluation occupy the majority of quality assur-
ance processes when applying mutation testing (75.9%). While as guidance, mutation
testing is primarily used in test data generation (36 instances), test strategy evaluation

2

40 2. A SLR OF HOW MUTATION TESTING SUPPORTS QUALITY ASSURANCE PROCESSES

Table 2.5: Summary of guide role

Evaluation Fault Type Number of papers

mutation faults 39
hand-seeded faults 7
hand-seeded + mutation faults 4
no evaluation 4
real faults 2
other coverage criteria 1

Table 2.6: Summary of test level

Test Level Number of papers

n/a 84
unit 77
integration 15
other 10
system 10

(6 instances) and test-case prioritisation (6 instances). From the above observations, we
draw one open issue and one recommendation for the “guide" role of mutation testing.
The open issue is how to find an adequate fault set instead of mutation faults to effec-
tively evaluate mutation-based testing methods. The recommendation is that mutation
testing can suggest not only where to check but also what to check. Where to check is
widely used to generate killable mutant constraints in different quality assurance pro-
cesses, while what to check is seldom adopted to improve the test data quality.

RQ2.1.3: WHICH TEST LEVEL DOES MUTATION TESTING TARGET?
OBSERVATIONS.
Table 2.6 presents the summary of the test level distribution across the articles. We ob-
serve that the authors of 84 papers do not provide a clear clue about the test level they
target (the class marked as “n/a”). For example, Aichernig et al.[44]’s study: they pro-
posed a fully automated fault-based test case generation technique and conducted two
empirical case studies derived from industrial use cases; however, they did not specify
which test level they targeted. One good instance that clearly provides the information
of the test level is Jee et al.[194] where they specified that their test case generation tech-
nique for FBD programs is at unit testing level. This is an open invitation for future
investigations in the area to be clearer about the essential elements of quality assurance
processes such as the test level. For the remainder of our analysis of RQ2.1.3, we ex-
cluded the papers labelled as “n/a" when calculating percentages, i.e., our working set is
107 (191 ° 84) papers.

Looking at Table 2.6, mutation testing mainly targets the unit-testing level (72.0%),
an observation which is in accordance with the results of Jia and Harman’s survey [197].
One of the underlying causes for the popularity of the unit level could be the origin

2.4. REVIEW RESULTS

2

41

of mutation testing. The principle of mutation testing is to introduce small syntactic
changes to the original program; this means the mutation operators only focus on small
parts of the program, such as arithmetical operators and return statements. Thus, such
small changes mostly reflect the abnormal behaviour of unit-level functionality.

While unit testing is by far the most observed test level category in our set of papers,
higher-level testing, such as integration testing (15 instances), can also benefit from the
application of mutation testing. Here we highlight some research works as examples:
Hao et al. [171] and Do and Rothermel [128] used the programs with system test cases
as their subjects in case studies. Hou et al. [184] studied interface-contract mutation
in support of integration testing under the context of component-based software. Li
et al. [229] proposed a two-tier testing method (one for integration level, the other for
system level) for graphical user interface (GUI) software testing. Rutherford et al. [310]
defined and evaluated adequacy criteria under system-level testing for distributed sys-
tems. In Denaro et al. [120]’s study, they proposed a test data generation approach using
data flow information for inter-procedural testing of object-oriented programs.

The important point we discovered here is that all the aforementioned studies did
not restrict mutation operators to model integration errors or system ones. In other
words, the traditional program mutations can be applied to higher-level testing. Amongst
these articles, the mutation operators adopted are mostly at the unit level, e.g., Arith-
metic Mutation Replacement, Relational Mutation Replacement. The mutation oper-
ators designed for higher-level testing, e.g., [112, 243], are seldom used in these stud-
ies. The only three exceptions in our collections are Flores and Polo[141], Vincenzi et
al.[349] and Flores and Polo[142], who adopted interface mutation to evaluate the in-
tegration testing techniques. This reveals a potential direction for future research: the
cross-comparison of different levels of mutation operators and quality assurance pro-
cesses at different test levels (see the third recommendation labelled as R3 in Section
2.4.4). The investigation of different levels of mutants can explore the effectiveness of
mutation faults at different test levels, such as the doubts whether the integration-level
mutation is better than unit-level mutation when assessing testing techniques at the in-
tegration level. In the same vein, an analysis of whether mutants are a good alternative
to real/hand-seeded ones (proposed by Andrews et al.[50]) at higher levels of testing also
seems like an important avenue to check out.

In addition, we created a class “others” in which we list 9 papers that we found hard
to classify in any of the other four test phases. These works can be divided into three
groups: grammar-based testing [75, 95, 176], spreadsheet-related testing [61, 179, 180]
and SQL-related testing [207, 249, 343]. The application of mutation testing on the “other"
set indicates that the definition of mutation testing is actually quite broad, thus poten-
tially leading to even more intriguing possibilities [279]: what else can we mutate?

SUMMARY.
The application of mutation testing is mostly done at the unit-level testing (44.0% of pa-
pers did not clearly specify their target test level(s)). For reasons of clarity, understand-
ability and certainly replicability, it is very important to understand exactly at what level
the quality assurance processes take place. It is thus a clear call to arms to researchers to
better describe these essential testing activity features.

2

42 2. A SLR OF HOW MUTATION TESTING SUPPORTS QUALITY ASSURANCE PROCESSES

Table 2.7: Summary of testing strategies

Testing Strategies Number of papers

structural testing 57
specification-based testing 52
structural testing (enhanced) 52
others 21
specification-based testing (enhanced) 13
hybrid testing 7
similarity-based testing 3

RQ2.1.4: WHICH TESTING STRATEGIES DOES MUTATION TESTING SUPPORT?
OBSERVATIONS.
In Table 2.7 we summarised the distribution of testing strategies based on our coarse-
grained classification (e.g., structural testing, specification-based testing) as mentioned
in Table 2.3. Looking at Table 2.7, structure-based testing (including the first and the
third rows in Table 2.7), 109 instances). The underlying cause could be that structural
testing is still the main focus of testing strategies in the software testing context. The
other testing strategies have also been supported by mutation testing: (1) specification-
based testing (including the second and the fifth rows in Table 2.7) accounts for 65 cases;
(2) hybrid testing (combination of structural and structure-based testing) for seven in-
stances, e.g., Briand et al. [86] investigated how data flow information can be used to
improve the cost-effectiveness of state-based coverage criteria; (3) three cases applying
mutation testing in similarity-based testing; (4) 21 instances in others, e.g., static analy-
sis.

One interesting finding is that enhanced structural testing ranks third, including mutation-
based techniques, information retrieval knowledge, observation notations and assertion
coverage. The popularity of enhanced structural testing reveals the awareness of the
shortage of conventional coverage-based testing strategies has increased.

Compared to enhanced structural testing, enhanced specification-based testing did
not attract much interest. The 13 instances mainly adopted mutation testing (e.g., Qu et
al. [300] and Papadakis et al. [287]) to improve the testing strategies.

SUMMARY.
Mutation testing has been widely applied in support of different testing strategies. From
the observation, the testing strategies other than white box testing can also benefit from
the application of mutation testing, such as specification-based testing, hybrid testing,
and similarity-based testing. However, structural testing is more popular than the oth-
ers (57.1%). Moreover, techniques like mutation-based techniques and information re-
trieval knowledge are also being adopted to improve the traditional structural-based
testing, which typically only relies on the coverage information of software artefacts; this
serves an indication of the increasing realisation of the limitations of coverage-based
testing strategies.

2.4. REVIEW RESULTS

2

43

Table 2.8: Summary of mutation tool

Availability Types Number of papers

Yes
existing 96

103partially-based 7
self-written 1

No

n/a (no information) 44

92
existing (given the name/citation) 22
self-written 14
manual 12

2.4.2. RQ2.2: HOW ARE EMPIRICAL STUDIES RELATED TO MUTATION TEST-
ING DESIGNED AND REPORTED?

RQ2.2.1: WHICH MUTATION TESTING TOOLS ARE BEING USED?
OBSERVATIONS.
We are interested in getting insight into the types (as defined in Table 2.3) of mutation
testing tools that are being used and into their availability. Therefore, we tabulated the
different types of mutation testing tools and their availability in Table 2.8. As shown
in Table 2.8, 50.3% of the studies adopted existing tools which are open to the public;
this matches our expectation: as mutation testing is not the main focus of the studies,
if there exists a well-performing and open-source mutation testing tool, researchers are
likely willing to use these tools. However, we also encountered 15 cases of using self-
implemented tools and 12 studies that manually applied mutation operators. A likely
reason for implementing a new mutation testing tool or for manually applying mutation
operators is that existing tools do not satisfy a particular need of the researchers. Be-
sides, most existing mutation testing tools are typically targeting one specific language
and a specific set of mutation operators [279] and they are not always easy to extend,
e.g., when wanting to add a newly-defined mutation operator. As such, providing more
flexible mechanisms for creating new mutation operators in mutation testing tools is an
important potential direction for future research [211, 279] (see the fourth recommen-
dation labelled as R4 in Section 2.4.4).

Unfortunately, there are also still 92 studies (48.2%) that do not provide access to the
tools, in particular, 44 papers did not provide any accessible information about the tools
(e.g., Hong et al.[183], Belli et al.[76] and Papadakis and Malveris[294]), a situation that
we marked as “n/a" in Table 2.8. This unclarity should serve as a notice to researchers:
the mutation testing tool is one of the core elements in mutation testing, and lack of
information on it seriously hinders replicability of the experiments.

Having discussed the tool availability and types, we are wondering which existing
open-source mutation testing tools are most popular. The popularity of the tools cannot
only reveal their level of maturity, but also provide a reference for researchers entering
the field to help them choose a tool. To this end, we summarised the names of mutation
tools for different programming languages in Table 2.9. Table 2.9 shows that we encoun-
tered 19 mutation tools in total. Most tools target one programming language (except

2

44 2. A SLR OF HOW MUTATION TESTING SUPPORTS QUALITY ASSURANCE PROCESSES

Table 2.9: Summary of existing mutation tools

Language Tool Number of papers

Java

MuJava/µ-java/Muclipse 41
JAVALANCHE 9
MAJOR 9
PIT/PiTest 7
Jumble 2
Sofya 1
Jester 1

C
Proteum 12
Proteum/IM 3
MiLu 2
SMT-C 1

Fortran Mothra 4

SQL
SQLMutation/JDAMA 3
SchemaAnalyst 1

C#
GenMutants 1
PexMutator 1

JavaScript MUTANDIS 3

AspectJ AjMutator 2

UML specification MoMuT::UML 1

for Mothra [210], which supports both C and Fortran). We encountered seven mutation
tools for Java, with the top 3 most-used being MuJava [239], JAVALANCHE [313] and Ma-
jor [204]. We found that four mutation tools for C are used, where Proteum [113] is the
most-frequently applied. Proteum/IM [114] is a special mutation testing tool that targets
interface mutation, which concerns integration errors. The integration errors are related
to a connection between two units and the interactions along the connection, such as a
wrong subprogram call.

In Jia and Harman [197]’s literature review, they summarised 36 mutation tools de-
veloped between 1977 and 2009. When comparing their findings (36 tools) to ours (19
tools), we find that there are 12 tools in common. The potential reason for us not cover-
ing the other 24 is that we only consider peer-reviewed conference papers and journals;
this will likely filter some papers which applied the other 24 mutation tools. Also im-
portant to stress, is that the goal of Jia and Harman’s survey is different to ours: while
we focus on the application of mutation tools, their study surveys articles that introduce
mutation testing tools. In doing so, we still managed to discover 8 mutation tools which
are not covered by Jia and Harman: (1) two tools are for Java: PIT and Sofya; (2) one for
C: SMT-C; (3) one for SQL: SchemaAnalyst; (4) one for UML: MoMuT::UML; (5) two for
C#: GenMutants and PexMutator; (6) one for JavaScript: MUTANDIS. Most of these tools

2.4. REVIEW RESULTS

2

45

Table 2.10: Summary of description level of mutation operators

Description Level Number of papers

well-defined 119
n/a 44
not sufficient 28

were released after 2009, which makes them too new to be included in the review of Jia
and Harman. Moreover, we can also witness the trend of the development of the muta-
tion testing for programming languages other than Java and C when compared to Jia and
Harman [197]’s data.

SUMMARY.
50.3% of the articles that we have surveyed adopt existing (open access) tools, while in a
few cases (27 in total) the authors implemented their own tools or seeded the mutants by
hand. This calls for a more flexible mutation generation engine that allows to easily add
mutation operators or certain types of constraints. Furthermore, we found 44 papers
that did not provide any information about the mutation tools they used in their experi-
ments; this should be a clear call to arms to the research community to be more precise
when reporting on mutation testing experiments. We have also gained insight into the
most popular tools for various programming languages, e.g., MuJava for Java and Pro-
teum for C. We hope this list of tools can be a useful reference for new researchers who
want to apply mutation testing.

RQ2.2.2: WHICH MUTATION OPERATORS ARE BEING USED?
OBSERVATIONS

For the mutation operators, we first present the distribution of the three description lev-
els (as mentioned in Table 2.3) in Table 2.10. As Table 2.10 shows, 62.3% (119 instances)
of the studies that we surveyed specify the mutation operators that they use, while more
than one-third of the articles do not provide enough information about the mutation
operators to replicate the studies. These 61 instances are labelled as “n/a" (e.g., Briand
et al.[87], DeMillo and Offutt[119] and Shi et al.[320]).

After that, based on our generalised classification of the mutation operators (as de-
fined in Listing 1), we characterised the 119 papers labelled as “well-defined". In addi-
tion to the overall distribution of the mutation operators regardless of the programming
language, we are also interested in the differences of the mutation operators for differ-
ent languages as the differences could indicate potential gaps in the existing mutation
operator sets for certain programming languages. In Table 2.11 we project the various
languages onto seven columns and our predefined mutation operator categories onto
the rows, thus presenting the distribution of the mutation operators used in the litera-
ture under our research scope.

Overall, we can see that program mutation is more popular than specification mu-
tation from Table 2.11. Among the program mutation operators, the arithmetic, rela-

1The Java-specific operator here refers to the static modifier change (including insertion and deletion).

2

46 2. A SLR OF HOW MUTATION TESTING SUPPORTS QUALITY ASSURANCE PROCESSES

Table 2.11: Mutation operators used in our collection

Level Operator Ja
va

C C
++

C
#

Fo
rt

ra
n

SQ
L

Ja
va

Sc
ri

p
t

To
ta

l

Specification Mutation 2 2 1 - - - - 23

Program Mutation 55 12 4 3 2 5 1 95

Expression-level

arithmetic operator 51 10 4 1 2 3 - 79
relational operator 47 8 4 1 2 3 - 74
conditional operator 47 7 4 2 2 3 - 72
bitwise operator 36 4 2 - - - - 43
assignment operator 33 4 2 - - - - 39
constant 18 5 2 - 2 3 - 37
shift operator 33 2 2 - - - - 36
variable 15 4 2 - 2 3 1 31
absolute value 19 3 2 1 1 3 - 31
conditional expression 9 3 - 1 - - - 14
parenthesis 1 2 - - - - - 3
type - 3 - - - - - 3

Statement-level

statement deletion 11 4 - 2 2 - - 23
method call 11 - 2 - - - 1 16
return statement 10 3 - - 2 - - 16
control-flow disruption 6 2 2 - - - - 9
exception handler 1 - 1 - - - - 5
goto label - 3 - - 2 - - 6
statement swap 2 2 2 - - - - 5
bomb statement - 2 - - 2 - - 5
switch statement 2 3 - - - - - 5
do statement - 2 - - 2 - - 5
brace - 3 - - - - - 3
loop trap - 3 - - - - - 3
while statement - 3 - - - - - 3
if statement - - - - - - - -

Others

OO-specific 23 - - - - - - 26
Java-specific 17 - 11 - - - - 17
Interface mutation 4 2 - - - - - 7
SQL-specific - - - - - 5 - 5
Concurrent mutation 4 - - - - - - 4
AOP-specific - - - - - - - 3
Spreadsheet-specific - - - - - - - 2
JavaScript-specific - - - - - - 1 1

tional and conditional operators are the top 3 mutation operators. These three operators
are often used together in most cases as their total number of applications are similar.
The underlying cause of the popularity of these three operators could be that the three
operators are among Offutt et al.[271]’s 5 sufficient mutation operators. Moreover, the
expression-level operators are more popular than the statement-level ones. As for the
statement-level mutation operators, statement deletion, method call, and return state-
ment are the top 3 mutation operators.

When we compare the mutation operators used in different languages to our muta-
tion operator categories, we see that there exist differences between different program-
ming languages, just like we assumed. Table 2.11 leads to several interesting findings that
reveal potential gaps in various languages (note that Table 2.11 only listed seven pro-
gramming languages that have been widely used). Moreover, as Jia and Harman [197]
also discussed mutation operators in their review, it is interesting to see whether their

2.4. REVIEW RESULTS

2

47

summary agrees with our work. Therefore, we also compared our findings to Jia and
Harman’s as follows:

1. For Java, seven mutation operators at the expression and statement level (except
go to label which is not supported in Java) are not covered by our survey: type,
bomb statement, do statement, brace, loop trap, while statement and if state-
ment. Compared to Jia and Harman’s survey, Alexander et al. [45, 79]’s design of
Java Object mutation cannot be found in our collection.

2. For C, only two operators are not covered by our dataset. The C programming lan-
guage does not provide direct support for exception handling. There is no article
applying mutation operators that target specific C program defects or vulnerabili-
ties surveyed by Jia and Harman, such as buffer overflows [348] and format string
bugs [318].

3. For C++, 3 expression-level, 10 statement-level and the OO-specific operators are
not used in our dataset. Jia and Harman have not covered mutation operators for
C++.

4. For C#, only a limited set of mutation operators are applied based on our dataset.
Our collection has no application of OO-specific operators [123] summarised in
Jia and Harman’s survey.

5. For Fortran, the earliest programming language mutation testing was applied to,
the studies in our collection cover a basic set. These mutation operators agree with
Jia and Harman’s work.

6. For SQL, since the syntax of SQL is quite different from imperative programming
languages, only six operators at the expression level and SQL-specific ones are
used in our dataset. Compared to Jia and Harman’s literature review, a set of muta-
tion operators addressing SQL injection vulnerabilities [317] are not found in our
collection.

7. For JavaScript, only three JavaScript-specific mutation operators are adopted in
studies we selected. Mutation operators for JavaScript [251] have not been covered
by Jia and Harman as the paper introducing them (i.e., Milani et al.[251]) is more
recent.

8. For interface mutation, we have found studies solely targeting Java and C in our
selection.

The comparison with Jia and Harman’s literature review has shown that for most pro-
gramming languages (except for C++ and JavaScript), a few mutation operators sum-
marised by Jia and Harman have no actual applications in our collection. As we only
considered 22 venues, we might miss the studies that adopted these mutation opera-
tors in other venues. Without regard to the potential threat of missing papers in our
dataset, these mutation operators that have no applications in our collection pose in-
teresting questions for further exploration, e.g., why are these operators seldom used by

2

48 2. A SLR OF HOW MUTATION TESTING SUPPORTS QUALITY ASSURANCE PROCESSES

other researchers? What is the difference between these operators and other widely used
operators?

Also, from the above findings, we can see that for different languages the existing
studies did not cover all the mutation operators that we listed in Table 2.11: some are
caused by the differences in the syntax, while the others could point to potential gaps.
However, these potential gaps are just the initial results in which we neither did further
analysis to chart the syntax differences of these languages nor investigate the possibility
of the equivalent mutants caused by our classification. Moreover, for some languages,
e.g., JavaScript, the relevant studies are too few to draw any definitive conclusions. We
can only say that Table 2.11 can be a valuable reference for further investigations into
mutation operator differences and gaps in different programming languages.

Furthermore, our generalised classification of the existing mutation operators can
also be of benefit to compare mutation tools in the future. Thereby, we compared the ex-
isting mutation testing tools (as listed in Table 2.9) to our mutation operator categories
in Table 2.12. Table 2.12 is based on the documentation or manuals of these tools. Here
we used the definitions of mutation operator groups from Listing 1 (mainly based on
MuJava [237, 238] and Proteum [43]) as the baseline: if there is a possible mutation miss-
ing in a group for a mutation testing tool, we marked “*" in Table 2.12. As there exist
different syntaxes in different programming languages, we also consider syntactic dif-
ferences when categorising the mutation operators of different tools. For example, there
is no modulus operator “%" in Fortran (but a MOD function instead), therefore, when con-
sidering the arithmetic mutation operators for Fortran (Mothra), we do not require the
modulus operator “%" to be included in Mothra.

It is important to mention that Table 2.9 is not the complete list of all the existing
mutation tools that have been published so far; these tools are chosen to investigate
how mutation testing supports quality assurance processes. We analyse them here as
they are open to public and have been applied by researchers at least once. The analysis
of mutation operators in these tools could also be a valuable resource for researchers in
mutation testing to consider.

The result shows that none of the existing mutation testing tools we analysed can
cover all types of operators we classified. For seven mutation testing tools for Java, they
mainly focus on the expression-level mutations and only five kinds of statement-level
mutators are covered. Furthermore, MuJava, PIT, and Sofya provide some OO-specific
operators, whereas PIT only supports one type, the Constructor Calls Mutator. For the
four mutation testing tools for C (including Mothra) that we have considered, Proteum
covers the most mutation operators. SMT-C is an exceptional case of the traditional mu-
tation testing which targets semantic mutation testing. Proteum/IM is the only mutation
tool listed in Table 2.12 that supports interface mutation. For the tools designed for C#,
OO-specific operators are not present.

Moreover, when we further analyse the missing mutations in each mutation operator
group (marked as “*" in Table 2.12), we found that most tools miss one or several muta-
tions compared to our generalised classification. Particularly for the arithmetic operator,
only MuJava and Proteum apply all possible mutations. The other tools that adopt the
arithmetic operator all miss Arithmetic Operator Deletion (as defined in MuJava [238]).

Another interesting finding when we compared Table 2.11 and Table 2.12, is that the

2.4. REVIEW RESULTS

2

49

Table 2.12: Comparison of mutation operators in existing mutation tools

M
u

Ja
va

/µ
-j

av
a/

M
u

cl
ip

se
[1

1,
23

7,
23

8]

PI
T

/P
iT

es
t[

3,
13

]

JA
VA

LA
N

C
H

E
[9

,3
13

]

M
A

JO
R

[2
1,

39
]

Ju
m

bl
e

[1
9]

So
fy

a
[3

8]

Je
st

er
[2

55
]

Pr
ot

eu
m

[1
4,

43
]

M
iL

u
[1

0]

SM
T-

C
[9

8]

Pr
ot

eu
m

/I
M

[1
5,

11
4]

M
ot

h
ra

[2
10

]

SQ
LM

u
ta

ti
on

/J
D

A
M

A
[3

42
]

Sc
h

em
aA

n
al

ys
t[

37
0]

G
en

M
u

ta
n

ts
[8

]

Pe
xM

u
ta

to
r

[2
6]

M
U

TA
N

D
IS

[2
52

]

A
jM

u
ta

to
r

[1
11

]
M

oM
u

T:
:U

M
L

[2
16

]

Specification Mutation - - - - - - - - - - - - - - - - - -
p

arithmetic operator
p p§ p§ p§ p§ p§ -

p p§ p§ -
p§ p§ -

p§ p§ p§ - -
relational operator

p p§ -
p

-
p§ -

p p p§ -
p p

-
p p p

- -
conditional operator

p p§ p§ p§ p§ p§ -
p p

- -
p p

-
p p p§ - -

assignment operator
p p§ -

p§ - - - -
p p§ - - - - - - - - -

bitwise operator
p p§ -

p p§ - -
p p§ - - - - - - - - - -

shift operator
p p§ -

p p§ - -
p

- - - - - - - - - - -
constant

p§ p p p p
-

p§ p p p§ -
p p

- - -
p

- -
variable

p§ p p p§ p§ - -
p

- - -
p p

- - -
p

- -
absolute value - -

p p
- - - -

p§ - -
p p

-
p p

- - -
conditional expression -

p p p
- -

p p
- - - - - - - - - - -

parenthesis - - - - - - -
p

-
p§ - - - - - - - - -

type - - - - - - -
p

- - - - - - - -
p§ - -

statement deletion
p p§ p§ p§ - - -

p p
- -

p
- - - -

p§ - -
method call - - -

p
-

p§ - - -
p§ - - - - - -

p§ - -
return statement -

p
-

p p
- -

p
- - -

p
- - - -

p
- -

if statement - - - - - - - - -
p§ - - - - - - - - -

exception handler - - - - - - - - - - - - - - - - - - -
goto label - - - - - - -

p
- - -

p
- - - - - - -

control-flow disruption - - -
p

- - -
p

- - - - - - - -
p

- -
statement swap - - - - - - -

p
- - - - - - - -

p§ - -
bomb statement - - - - - - -

p
- - -

p
- - - - - - -

switch statement -
p

- -
p

- -
p

-
p

- - - - - -
p

- -
do statement - - - - - - - - - - -

p
- - - - - - -

brace - - - - - - -
p

- - - - - - - - - - -
loop trap - - - - - - -

p
- - - - - - - - - - -

while statement - - - - - - -
p

- - - - - - - - - - -
OO-specific

p p§ - - -
p§ - - - - - - - - - - - - -

Java-specific
p

- - - - - - - - - - - - - - - - - -
SQL-specific - - - - - - - - - - - -

p p
- - - - -

JavaScript-specific - - - - - - - - - - - - - - - -
p

- -
AOP-specific - - - - - - - - - - - - - - - - -

p
-

interface mutation - - - - - - - - - -
p

- - - - - - - -

Note: the entry marked with * means the tool does not provide the full possible mutations. Our
summary of the mutation tools is based on the available manuals and open repositories (if they
exist) for the tools. If there are different versions of the tools, we only consider the newest one.

if statement mutator is not used in literature, but it is supported by SMT-C. This obser-
vation indicates that not all the operators provided by the tools are used in the studies
when applying mutation testing. Therefore, we zoom in on this finding and investigate
whether it is a common case that only a subset of the mutation operators from the exist-
ing mutation tools is adopted in studies based on our collection. The result shows that
21 studies out of 542applied a subset of the mutation operators from the existing tools;
this reinforces our message of the need for “well-defined" mutation operators when re-

2

50 2. A SLR OF HOW MUTATION TESTING SUPPORTS QUALITY ASSURANCE PROCESSES

porting mutation testing studies.

SUMMARY.
For the mutation operators, we focused on two attributes: their description level and a
generalised classification across tools and programming languages. When investigating
the description level of the mutation operators that are used in studies, we found that
62.3% (119 instances) explicitly defined the mutation operators used; this leads us to
strongly recommend improving the description level for the sake of replicability. Fur-
thermore, the distribution of mutation operators based on our predefined categories
shows the lacking of certain mutation operators in some programming languages among
the existing (and surveyed) mutation testing tools. A possible avenue for future work is to
see which of the missing mutation operators can be implemented for the programming
languages lacking these operators.

RQ2.2.3: WHICH APPROACHES ARE USED TO OVERCOME THE EQUIVALENT MUTANT PROB-
LEM WHEN APPLYING MUTATION TESTING?
OBSERVATIONS.
In Table 2.13, we summarised our findings of how the studies that we surveyed deal
with the equivalent mutant problem. More specifically, Table 2.13 presents how many
times we encountered each of the approaches for solving the equivalent mutant prob-
lem. When looking at the results, we first observe that in 56.5% of the cases we assigned
“n/a”, such as Androutsopoulos et al.[52] and Flores and Polo[142].

As shown in Table 2.13, there are only 17 instances actually adopting equivalent mu-
tant detectors by using automatic mechanisms. Specifically, 6 instances use “model
checker" (e.g., Gay et al. [156]); 8 instances use “reduce likelihood" (e.g., Milani et al. [251]);
and 3 instances apply “deterministic model" (Belli et al.[76]). In the remaining papers,
the problem of equivalent mutants is solved by: (1) manual analysis (e.g., Liu et al. [231]
and Xie et al. [371]); (2) making assumptions (treating mutants not killed as either equiv-
alent or non-equivalent, e.g., Fang et al.[136] and Rothermel et al. [307]); (3) no investi-
gation (e.g., Offutt and Liu [273], Chen et al [97] and Fraser and Zeller [150]). The manual
investigation (38 instances) and the method of treating mutants not killed as equivalent
(17 instances) are more commonly used than other methods. We also compared our
results with Madeyski et al. [241]’s survey on the equivalent mutant problem. In their re-
view, they reviewed 17 methods for overcoming the equivalent mutant problem. Among
these 17 techniques, we found that only the model-checker approach [129] was adopted.

We can only speculate as to the reasons behind the situation above: Firstly, most
studies use mutation testing as an evaluation mechanism or guiding heuristic, rather
than their main research topic. So, the authors might be not willing to spare too much
effort in dealing with problems associated with mutation testing. Moreover, looking at
the internal features of existing tools used in literature (in Table 2.14), we found that only
five tools adopt techniques to address the equivalent mutant problem. Most of the tools
did not assist in dealing with the equivalent mutant problem. Therefore, in this chapter,
we consider the aforementioned three solutions: (1) manual analysis, (2) making as-
sumptions, or (3) no investigation. If there exists a well-developed auxiliary tool that can

2The studies that are categorised as “yes" in the tool availability, “existing tool" in the tool type and “well-
defined" in the mutation operator description level.

2.4. REVIEW RESULTS

2

51

Table 2.13: Summary of methods for overcoming E(quivalent) M(utant) P(roblem)

Equivalence Detector Number of papers

n/a 108
manual investigation 38
not killed as equivalent 17
no investigation 11
reduce likelihood 8
model checker 6
deterministic model 3
not killed as non-equivalent 3

Table 2.14: Inner features of existing mutation tools

Language Tool Equivalent Mutants Cost Reduction

Java

MuJava/µ-java/Muclipse n/a MSG, bytecode translation (BCEL) [239]

PIT/PiTest n/a Bytecode translation (ASM), coverage-based test
selection [24]

JAVALANCHE Ranking mutations by
impact [313]

MSG, bytecode translation (ASM), coverage-
based test selection, parallel execution [313]

MAJOR n/a Compiler-integrated, coverage-based test selec-
tion [204]

Jumble n/a Bytecode translation (BCEL), conventional test
selection [190]

Sofya n/a Bytecode translation (BCEL) [256]

Jester n/a n/a

C
Proteum n/a Mutant sample [113]

MiLu Trivial Compiler Equiva-
lence [288]

Higher-order mutants, test harness [196]

SMT-C n/a Interpreter-based, weak mutation [109]

Proteum/IM n/a Compiler-based, control flow optimisation [114]

Fortran Mothra n/a Interpreter-based [197]

SQL
SQLMutation/JDAMA Constraint binding [342] n/a

SchemaAnalyst n/a n/a

C#
GenMutants n/a n/a

PexMutator n/a Compiler-based [382]

JavaScript MUTANDIS Reduce likelihood [252] Selection strategy [252]

AspectJ AjMutator Static analysis [111] Compiler-based [111]

UML specification MoMuT::UML n/a Compiler-based [216]

Note: “n/a" in the table means we did not find any relevant information recorded in literature or websites, and some tools might
adopt certain techniques but did not report such information in the sources we can trace.

be seamlessly connected to the existing mutation systems for helping the authors detect
equivalent mutants, this tool might be more than welcomed. We recommend that fu-
ture research on the equivalent mutant problem can further implement their algorithms
in such an auxiliary tool and make it open to the public (see the fifth recommendation
labelled as R5 in Section 2.4.4).

2

52 2. A SLR OF HOW MUTATION TESTING SUPPORTS QUALITY ASSURANCE PROCESSES

Secondly, the mutation score is mainly used as a relative comparison for estimating
the effectiveness of different techniques. Sometimes, mutation testing is only used to
generate likely faults; equivalent mutants have no impact on the other measures such as
the Average Percentage of Fault Detection rate (APFD) [306]. Furthermore, the definition
of the mutation score is also modified by some authors (e.g., Rothermel et al.[307]) : they
used the total number of mutants as the denominator instead of the number of non-
equivalent mutants. The equivalent mutant problem seems to not pose a significant
threat to the validation of the testing techniques involved in these studies.

However, we should not underestimate the impact of the equivalent mutant prob-
lem on the accuracy of the mutation score. Previous empirical results indicated that 10
to 40 percent of mutants are equivalent [270, 274]. What’s more, Schuler and Zeller [314]
further claimed that around 45% of all undetected mutants turned out to be equivalent;
this observation leads to the assumption that by simply treating mutants not killed as
equivalent mutations, we could be overestimating the mutation score. Therefore, we
recommend performing more large-scale investigations on whether the equivalent mu-
tant problem has a strong impact on the accuracy of the mutation score.

SUMMARY.
The techniques for equivalent mutant detection are not commonly used when apply-
ing mutation testing. The main approaches that are used are the manual investigation
and treating mutants not killed as equivalent. Based on the results, we recommend that
further research on the equivalent mutant problem can develop a mature and useful
auxiliary tool which can easily link to the existing mutation system. Such an extra tool
assists people to solve the equivalent mutant problem when applying mutation testing
more efficiently. Moreover, research on whether the equivalent mutant problem has a
high impact on the accuracy of the mutation score is still needed, as the majority did not
consider the equivalent mutant problem as a significant threat to the validation of the
quality assurance processes. Also, 56.5% of the studies are lacking an explanation as to
how they are dealing with overcoming the equivalent mutant problem; this again calls
for more attention on reporting mutation testing appropriately.

RQ2.2.4: WHICH TECHNIQUES ARE USED TO REDUCE THE COMPUTATIONAL COST WHEN

APPLYING MUTATION TESTING?
OBSERVATIONS.
Since mutation testing requires high computational demands, cost reduction is neces-
sary for applying mutation testing, especially in an industrial environment. We sum-
marized the use of such computational cost reduction techniques when using mutation
testing in Table 2.15. Please note that we excluded the runtime optimisation and selec-
tive mutation techniques. We opted to exclude this because the runtime optimisation is
related to tool implementation, which is not very likely to appear in the papers under our
research scope, while the second one, selective mutation, is adopted by all the papers.

First of all, we noticed that 131 articles (68.6%) did not mention any reduction tech-
niques, e.g., Außerlechner et al.[61] and Baker and Habli[62]. If we take into account
those papers that used the runtime optimisation and selective mutation, one plausible
explanation for the numerous “n/a” instances is a lack of awareness of properly report-
ing mutation testing, as we mentioned earlier. Secondly, random selection of the mu-

2.4. REVIEW RESULTS

2

53

Table 2.15: Summary of cost reduction

Cost Reduction Technique Number of papers

n/a 131
fixed number 28
weak mutation 15
mutant sample 11
selection strategy 8
higher-order 1

tants based on a fixed number comes next (28 instances, e.g., Namin and Andrews [262]
and Staats et al. [327]), followed by weak mutation (15 instances, e.g. Hennessy and
Power [176] and Vivanti et al. [353]) and mutant sampling (11 cases, e.g. Arcuri and
Briand [54] and Stephan and Cordy [331]). However, why is the technique of using a
“fixed number" of mutants more popular than the others? We speculate that this could
be because choosing a certain number of mutants is more realistic in real software devel-
opment: the total number of mutants generated by mutation tools is enormous; while,
realistically, only a few faults are made by the programmer during implementation. By
fixing the number of mutants, it becomes easier to control the mutation testing process.
Instead, relying on the weak mutation condition would require additional implementa-
tion efforts to modify the tools. It is also important to note that the difference between
the “fixed number" and “mutant sample" choice: while the first one implies a fixed num-
ber of mutants, the second one relies on a fixed sampling rate. Compared to using a fixed
number, mutant sampling sometimes cannot achieve the goal of reducing the number
of mutants efficiently. In particular, it is hard to set one sample ratio if the size of the
subjects varies greatly. For example, consider the following situation: one subject has
100,000 mutants while the other has 100 mutants. When the sample ratio is set to 1%,
the first subject still has 1000 mutants left, while the number of mutants for the second
one is reduced to one.

We performed a further analysis of the mutation tools in Table 2.14. We find that
most tools adopted some types of cost reduction techniques to overcome the high com-
putational expense problem. For mutation testing tools for Java, bytecode translation
is frequently adopted while Mutant Schemata Generation (MSG) is used in two tools,
MuJava and JAVALANCHE. Another thing to highlight is that MiLu used a special test
harness to reduce runtime [196]. This test harness is created containing all the test cases
and settings for running each mutant. Therefore, only the test harness needs to be exe-
cuted while each mutant runs as an internal function call during the testing process.

Selective mutation is also widely applied in almost all the existing mutation testing
tools (as shown in Table 2.12). This brings us to another issue: is the selected subset of
mutation operators sufficient to represent the whole mutation operator set? When adopt-
ing selective mutation, some configurations are based on prior empirical evidence, e.g.,
Offutt et al.’s five sufficient Fortran mutation operators [271], and Siami et al.’s 28 suf-
ficient C mutation operators [322]. However, most of the articles are not supported by
empirical or theoretical studies that show a certain subset of mutation operators can

2

54 2. A SLR OF HOW MUTATION TESTING SUPPORTS QUALITY ASSURANCE PROCESSES

represent the whole mutation operator set. As far as we know, most studies on selective
mutation are merely based on Fortran [258, 271, 367] and C [65, 220, 261, 322] programs.
Thereby, we recommend more empirical studies on selective mutation in programming
languages other than Fortran).

Compared to Jia and Harman’s literature review [197], most of the cost reduction
techniques they surveyed have been adopted in our collection. Runtime optimisation
techniques which they summarised, e.g., interpreter-based technique [210], compiler-
based approach [113] and bytecode translation [239] have been widely adopted in ex-
isting mutation testing tools. However, the articles we have reviewed did not apply Firm
Mutation [192] and advanced platforms support for mutation testing, such as SIMD [215]
and MIMD machines [276]. For Firm Mutation, there is no publicly available tool to sup-
port this method; thus, other researchers cannot adopt this approach conveniently. As
for advanced platforms, these machines are not easy for other researchers in the mu-
tation testing field to obtain. One exception is the cost reduction technique with a fixed
number, which was not covered by Jia and Harman [197]. As mentioned earlier, the fixed-
number-of-mutants technique is different from mutant sampling as the former selects a
subset of mutants based on a fixed number rather than a ratio. We speculated the reason
why Jia and Harm [197] did not include this method is that reduction based on a fixed
number is too simple to be considered as a real technique for cost reduction in mutation
testing. However, such a technique is surprisingly popular among the applications of
mutation testing.

SUMMARY.
Based on the above discussion, we infer that the problem of the high computational
cost of mutation testing can be adequately controlled using the state-of-art reduction
techniques, especially selective mutation and runtime optimisation. Selective mutation
is the most widely used method for reducing the high computational cost of mutation
testing. However, in most cases, there are no existing studies to support the prerequi-
site that selecting a particular subset of mutation operators is sufficient to represent the
whole mutation operator set for other programming languages instead of C and For-
tran. Therefore, one recommendation is to conduct more empirical studies on selective
mutation in various programming languages. Random selection of the mutants based
on a fixed number (28 papers) is the most popular technique used to reduce the com-
putational cost. The other popular techniques are weak mutation and mutant sampling.
Besides, a high percentage of the papers (68.6%) did not report any reduction techniques
used to cope with computational cost when applying mutation testing; this again should
serve as a reminder for the research community to pay more attention to properly report-
ing mutation testing in testing experiments.

RQ2.2.5: WHAT SUBJECTS ARE BEING USED IN THE EXPERIMENTS (REGARDING PROGRAM-
MING LANGUAGE, SIZE, AND DATA AVAILABILITY)?
OBSERVATIONS.
To analyse the most common subjects used in the experiments, we focus on three at-
tributes of the subject programs, i.e., programming language, size and data availability.
We will discuss these three attributes one by one in the following paragraphs.

2.4. REVIEW RESULTS

2

55

Table 2.16 shows the distribution of the programming languages. We can see that
Java and C dominate the application domain (66.0%, 126 instances). While JavaScript
is an extensively used language in the web application domain, we only found three re-
search studies in our datasets that applied mutation testing for this programming lan-
guage. The potential reasons for this uneven distribution are unbalanced data availabil-
ity and the complex nature of building a mutation testing system. The first cause, uneven
data availability, is likely instigated by the fact that existing, well-defined software repos-
itories such as SIR [126], SF100 [146] are based on C and Java. We have not encountered
such repositories for JavaScript, C# or SQL. Furthermore, it is easier to design a muta-
tion system targeting one programming language; this stands in contrast to many web
applications, which are often composed out of a combination of JavaScript, HTML, CSS,
etc; thus, this increases the difficulty of developing a mutation system for these combi-
nations of programming languages. It is also worth noticing that we have not found any
research on a purely functional programming language in our research scope.

When considering the size of the subject programs, in addition to our collection, we
also summarise the data presented in Jia and Harman’s survey [197] in Table 2.17. In Jia
and Harman [197]’s survey, they summarised all the programs used in empirical studies
related to mutation testing including the program size and the total number of uses. In
Table 2.17, to summarise the data from Jia and Harman, we first categorise the programs
into five classes (as shown in the first column) according to their size in LOC, and then
add up the total number of usages (as shown in the third column). It is important to note
that the program data in Jia and Harman’s survey [197] is different from ours: they col-
lected the programs from empirical studies which aimed to evaluate the effectiveness of
mutation testing, e.g., Mathur and Wong compared data flow criteria with mutation test-
ing [244]. These studies are not part of our research scope: we focus on the application
perspective while these works target the development of mutation testing approaches.
The purpose of the comparison of Jia and Harman’s data is to investigate the difference
between two perspectives of mutation testing, i.e., the development and the application
perspective. Moreover, they listed all the possible programs used in empirical studies
while we only collected the maximum size of the programs.

As for our collection, studies involving preliminary (<100 LOC), small (100ª10K LOC)
subjects or studies with no information about programs size (“n/a" instances in Ta-
ble 2.17) represent 80.6%(154 instances) of papers in our collection. Among these “n/a"
cases, some papers (e.g., Xie et al. [371]) did not provide any information about the sub-
ject size (LOC), and a few cases (e.g., Baudry et al [67]) report outdated links. This high
percentage of preliminary, small and “n/a" subjects indicates that mutation testing is
rarely applied to programs whose size is larger than 10K LOC. We did find that only 35
studies use medium size subjects, which corresponds to 29.9%3 of papers. Compared
to Jia and Harman’s data [197], preliminary programs account for 63.4%4of the study set,
which is much higher than in our study. There are two possible causes for this finding.
The one is that we only consider the maximum size of the programs in each study, we
could subtract many potential cases that used preliminary programs from our results.
The other is that a considerable number of the empirical studies on mutation testing
that Jia and Harman reviewed date back to the 1990s. These early-stage research works

3Notice that we did not consider the number of “n/a" value when calculating the percentage.(191 ° 74 = 117).

2

56 2. A SLR OF HOW MUTATION TESTING SUPPORTS QUALITY ASSURANCE PROCESSES

Table 2.16: Summary of programming languages

Programming language Number of papers

Java 92
C 34
Lustre/Simulink 8
C# 6
Fortran 6
n/a 6
C++ 5
SQL 5
Eiffel 3
Spreadsheet 3
AspectJ 3
JavaScript 3
Enterprise JavaBeans application 2
C/C++ 2
Ada 1
Kermeta 1
Delphi 1
ISO C++ grammar 1
PLC 1
Sulu 1
XACML 1
XML 1
HLPSL 1
PHP 1
other specification languages 10

on mutation testing mainly involving preliminary subjects. Also, we witness an increas-
ing trend of medium and large size subject systems being used in studies on mutation
testing; this shows the full potential of mutation testing in large-scale applications.

With regard to data availability, we observe the following: 49.7% of the studies pro-
vide open access to their experiments. Some studies, such as Staats et al.[328], used
close-sourced programs from industry. There are also a few cases for which the source
links provided by the authors are not accessible anymore, e.g., Jolly et al.[199]. We also
found that several cases used open-source software corpora, such as SF110, but they
only used a sample of the corpus (e.g., Rojas et al. [305]) without providing sample in-
formation. The others did not provide information about sources in their paper, e.g.,
Kanewala and Bieman[206].

Together with 6 instances of “n/a" in Table 2.16 and 74 in Table 2.17 (including sub-
jects which cannot be measured as LOC, e.g., spreadsheet applications), it is worth notic-
ing that subject programs used in the experiment should be clearly specified. Also, basic

4Similarly, we removed the cases of “n/a" here when calculating the percentage.(402 ° 28 = 374).

2.4. REVIEW RESULTS

2

57

Table 2.17: Summary of subject size

Subject Size No. of papers No. of programs
in our collection in Jia and Harman [197]

n/a 74 28
small (100ª10K LOC) 70 128
medium (10Kª1M LOC) 35 9
preliminary (<100 LOC) 10 237
large (>1M LOC) 2 0

Note: The results of our collection are based on the maximum size of the
programs used in each study while Jia and Harman’s is based on all the pro-
grams.

Table 2.18: Summary of data availability

Data Availability Number of papers

no 96
yes 95

information on the programming language, size and subject should also be clearly spec-
ified in the articles to ensure replicability.

SUMMARY.
For the subjects used in the experiments in our survey, we discussed three aspects: pro-
gramming language, size of subject projects and data availability. For programming
languages, Java and C are the most common programming languages used in the ex-
periments when applying mutation testing. There is a clear challenge in creating more
mutation testing tools for other programming languages, especially in the area of web
applications and functional programming (see the recommendation labelled as R7 in
Section 2.4.4).

As for the maximum size of subject programs, small to medium scale projects (100ª1M)
are widely used when applying mutation testing. Together with two large-scale cases, we
can see the full potential of mutation testing as a practical testing tool for large indus-
trial systems. We recommend more research on large-scale systems to further explore
scalability issues (see the recommendation labelled as R8 in Section 2.4.4).

The third aspect we consider is data availability. Only 49.7% of the studies that we
surveyed provide access to the subjects used; this again calls for more attention on re-
porting test experiments appropriately: the authors should explicitly specify the subject
programs used in the experiment, covering at least the details of programming language,
size, and source.

2.4.3. SUMMARY OF RESEARCH QUESTIONS
We now revisit the research questions and answer them in the light of our observations.

2

58 2. A SLR OF HOW MUTATION TESTING SUPPORTS QUALITY ASSURANCE PROCESSES

RQ2.1: HOW IS MUTATION TESTING USED IN QUALITY ASSURANCE PROCESSES?
Mutation testing is mainly used as a fault-based evaluation method (70.2%) in different
quality assurance processes. It assesses the fault detection capability of various testing
techniques through the mutation score or the number of killed mutants. Adopting muta-
tion testing to improve other quality assurance processes as a guide was first proposed by
DeMillo and Offutt [116] in 1991 when they used it to generate test data. As a “high end"
test criterion, mutation testing started to gain popularity as a building block in different
quality assurance processes, like test data generation (36 instances), test case prioritisa-
tion (6 cases) and test strategy evaluation (6 instances). However, using mutation testing
as part of new test approaches raises a challenge in itself, namely how to efficiently eval-
uate mutation-based testing? Besides, we found one limitation related to the “guide"
role of mutation testing: mutation testing usually serves as a where-to-check constraint
rather than a what-to-check improvement. Another finding of the application of muta-
tion testing is that it often targets unit-level testing (72.0%), with only a small number of
studies featuring higher-level testing showing the overall benefit of mutation testing. As
a result, we conclude that the current state of the application of mutation testing is still
rather limited.

RQ2.2: HOW ARE EMPIRICAL STUDIES RELATED TO MUTATION TESTING DESIGNED AND

REPORTED?
First of all, for the mutation testing tools and mutation operators used in literature, we
found that 47.6% of the articles adopted existing (open-access) mutation testing tools,
such as MuJava for Java and Proteum for C. In contrast, we did encounter a few cases
(27 in total) where the authors implemented their own tools or seeded mutants by hand.
Furthermore, to investigate the distribution of mutation operators in the studies, we cre-
ated a generalised classification of mutation operators as shown in Listing 1. The results
indicate that certain programming languages lack specific mutation operators, at least
as far as the mutation tools that we have surveyed concern.

Moreover, when looking at the two most significant problems related to mutation
testing, the main approaches to dealing with the equivalent mutant problem are (1)
treating mutants not killed as equivalent and (2) not investigating the equivalent mu-
tants at all. In terms of cost reduction techniques, we observed that the “fixed number
of mutants” is the most popular technique, although we should mention that we did not
focus on built-in reduction techniques.

The findings above suggest that the existing techniques designed to support the ap-
plication of mutation testing are largely still under development: a mutation testing tool
with a more complete set of mutation operators or a flexible mutation generation engine
to which mutation operators can be added, is still needed [211, 279]. In the same vein, a
more mature and efficient auxiliary tool for assisting in overcoming the equivalent mu-
tant problem is needed. Furthermore, we have observed that we lack insight into the
impact of the selective mutation on mutation testing; this suggests that a deeper under-
standing of mutation testing is required. For example, if we know what particular kinds
of faults mutation is good at finding or how useful a certain type of mutant is when test-
ing real software, we can then design the mutation operators accordingly, such as Just et
al. [201].

2.4. REVIEW RESULTS

2

59

Table 2.19: Summary of poorly-specified aspects in empirical studies

The poorly-specified aspects in reporting mu-
tation testing

Number of papers

test level (see Section 2.4.1) 84
mutation tool source (see Section 2.4.2) 92
mutation operators (see Section 2.4.2) 72
equivalent mutant problem (see Section 2.4.2) 108
reduction problem (see Section 2.4.2) 131
subject program source (see Section 2.4.2) 96

Based on the distribution of subject programs used in testing experiments or case
studies, Java and C are the most common programming languages used in the experi-
ments. Also, small to medium scale projects (100ª1M LOC) are the most common sub-
jects employed in the literature.

From the statistics of the collection, we found that a considerable amount of papers
did not provide a sufficiently clear or thorough specification when reporting mutation
testing in their empirical studies. We summarised the poorly-specified aspects of muta-
tion testing in Table 2.19. As a result, we call for more attention on reporting mutation
testing appropriately. The authors should provide at least the following details in the ar-
ticles: the mutation tool (preferably with a link to its source code), mutation operators
used in experiments, how to deal with the equivalent mutant problem, how to cope with
high computational cost and details of the subject program (see the ninth recommenda-
tion labelled as R9 in Section 2.4.4).

2.4.4. RECOMMENDATION FOR FUTURE RESEARCH
In this section, we will summarise the recommendations for future research based on the
insights obtained for the two main research questions (see Sections 2.4.1 through 2.4.3).
We propose nine recommendations for future research:

• R1: Mutation testing cannot only be used as where-to-check constraints but also
to suggest what to check to improve test code quality.

As shown in Table 2.4 in Section 2.4.1, when mutation testing serves as a “guide”,
mutants generated by the mutation testing system are mainly used to suggest the
location to be checked, i.e., where-to-check constraints. For example, the loca-
tion of mutants is used to assist the localisation of “unknown" faults in fault lo-
calisation. The mutation-based test data generation also used the position infor-
mation to generate killable mutant conditions. However, mutation testing is not
widely considered to be a benefit to improve test code quality by suggesting what
to check, especially in the test oracle problem. The what-to-check direction can
be one opportunity for future research in mutation testing as a “guide” role.

• R2: For testing approaches that are guided by a mutation approach, more focus
can be given to finding an appropriate way to evaluate mutation-based testing
in an efficient manner.

2

60 2. A SLR OF HOW MUTATION TESTING SUPPORTS QUALITY ASSURANCE PROCESSES

When looking at the evaluation types in Table 2.5 in Section 2.4.1, we observe that
75.4% of the mutation-based testing techniques still adopt mutation faults to as-
sess their effectiveness. This raises the question of whether the conclusions might
be biased. As such, we open the issue of finding an appropriate way to evaluate
mutation-based testing efficiently.

• R3: Study the higher-level application of mutation testing.

In Section 2.4.1 we observed that mutation testing seems to mainly target unit-
level testing, accounting for 72.0% of the studies we surveyed. This reveals a po-
tential gap in how mutation testing is currently applied. It is thus our recommen-
dation that researchers pay more attention to higher-level testing, such as integra-
tion testing and system testing. The research community should not only inves-
tigate potential differences in applying mutation testing at the unit-level or at a
higher level of testing but should also explore whether the conclusions based on
unit-level mutation testing still apply to higher-level mutation testing. A pertinent
question in this area could be, for example, whether an integration mutation fault
can be considered as an alternative to a real bug at the integration level.

• R4: The design of a more flexible mutation generation engine that allows for the
easy addition of new mutation operators.

As shown in Table 2.8 in Section 2.4.1, 50.3% of the articles adopted the existing
tools which are open-source, while we also found 27 instances of researchers im-
plementing their own tool or seeding the mutants by hand. Furthermore, in Ta-
ble 5.1 and Table 2.12, we can see certain existing mutation testing tools lack cer-
tain mutation operators. These findings imply that existing mutation testing tools
cannot always satisfy all kinds of needs, and new types of mutation operators are
also potentially needed. Since most existing mutation testing tools have been ini-
tialized for one particular language and a specific set of mutation operators, we
see a clear need for a more flexible mutation generation engine to which new mu-
tation operators can be easily added [279].

• R5: A mature and efficient auxiliary tool to detect equivalent mutants that can
be easily integrated with existing mutation tools.

In Section 2.4.2, the problem of equivalent mutants is mainly solved by manual
analysis, assumptions (treating mutants not killed as either equivalent or non-
equivalent) or no investigation at all during application. This observation leads
to doubt about the efficacy of the state-of-art equivalent mutant detection. In the
meanwhile, if there is a mature and efficient auxiliary tool which can easily link
to the existing mutation system, the auxiliary tool can be a practical solution for
the equivalent mutant problem when applying mutation testing. As a result, we
call for a well-developed and easy to integrate an auxiliary tool for the equivalent
mutant problem.

• R6: More empirical studies on the selective mutation method can pay attention
to programming languages other than Fortran and C.

2.5. THREATS TO THE VALIDITY OF THIS REVIEW

2

61

As mentioned in Section 2.4.2, selective mutation is used by all the studies in our
research scope. However, the selection of a subset of mutation operators in most
papers is not well supported by existing empirical studies, except for Fortran [258,
271, 367] and C [65, 220, 261, 322]. Selective mutation requires more empirical
studies to explore whether a certain subset of mutation operators can be applied
in different programming languages.

• R7: More attention should be given to other programming languages, especially
web applications and functional programming projects.

As discussed in RQ2.5 in Section 2.4.2, Java and C are the most common program-
ming languages that we surveyed. While JavaScript and functional programming
languages are scarce. JavaScript, as one of the most popular languages for develop-
ing web applications, calls for more attention from researchers. In the meanwhile,
functional programming languages, such as Lisp and Haskell, are still playing an
inevitable role in the implementation of programs; they thus deserve more focus
in future studies.

• R8: Application of mutation testing in large-scale systems to explore scalability
issues.

From Table 2.17 in Section 2.4.2, we learn that the application of mutation testing
to large-scale programs whose size is greater than 1M LOC rarely happens (only
two cases). To effectively apply mutation testing in industry, the scalability issue
of mutation testing requires more attention. We recommend future research to
use mutation testing in more large-scale systems to explore scalability issues.

• R9: Authors should provide at least the following details in the articles: muta-
tion tool source, mutation operators used in experiments, how to deal with the
equivalent mutant problem, how to cope with high computational cost and sub-
ject program source.

From Table 2.19 in Section 2.4.4, we remember that a considerable amount of pa-
pers inadequately reported on mutation testing. To help progress research in the
area more quickly and to allow for replication studies, we all need to take care to
be careful in how we report mutation testing in empirical research. We consider
the above five elements to be essential when reporting mutation testing.

2.5. THREATS TO THE VALIDITY OF THIS REVIEW
We have presented our methodology for performing this systematic literature review
and its findings in the previous sections. As conducting a literature review largely re-
lies on manual work, there is the concern that different researchers might end up with
slightly different results and conclusions. To eliminate this potential risk caused by re-
searcher bias as much as possible, we follow the guidelines for performing systematic
literature reviews by Kitchenman [212], Wohlin [365], and Brereton et al. [85]) whenever
possible. In particular, we keep a detailed record of procedures made throughout the re-
view process by documenting all the metadata from article selection to characterisation
(see [23]).

2

62 2. A SLR OF HOW MUTATION TESTING SUPPORTS QUALITY ASSURANCE PROCESSES

In this section, we describe the main threats to the validity of this review and discuss
how we attempted to mitigate the risks regarding four aspects: the article selection, the
attribute framework, the article characterisation and the result interpretation.

2.5.1. ARTICLE SELECTION
Mutation testing is an active research field, and a plethora of realisations have been
achieved as shown in Jia and Harman’s thorough survey [197]. To address the main inter-
est of our review, i.e., the actual application of mutation testing, we need to define inclu-
sion/exclusion criteria to include papers of interest and exclude irrelevant ones. But this
also introduces a potential threat to the validity of our study: unclear article selection
criteria. To minimise the ambiguity caused by the selection strategies, we carried out a
pilot run of the study selection process to validate our selection criteria among the three
authors. This selection criteria validation led to a tiny revision. Besides, if there is any
doubt about whether a paper belongs in our selected set, we had an internal discussion
to see whether the paper should be included or not.

The venues listed in Table 2.2 were selected because we considered them to be the
key venues in software engineering and most relevant to software testing, debugging,
software quality and validation. This presumption might result in an incomplete pa-
per collection. In order to mitigate this threat, we also adopted snowballing to extend
our set of papers from pre-selected venues to reduce the possibility of missing papers.
Moreover, we also ran two sanity checks (as mentioned in Section 2.3.2) to examine the
completeness of our study collection, and recorded the dataset in each step for further
validation.

Although we made efforts to minimise the risks with regard to article selection, we
cannot make definitive claims about the completeness of this review. We have one ma-
jor limitation related to the article selection: we only considered top conference or jour-
nal papers to ensure the high quality while we excluded article summaries, interviews,
reviews, workshops (except the International Workshop on Mutation Analysis), panels
and poster sessions. Vice versa, sometimes we were also confronted with a vague use of
the “mutation testing" terminology, in particular, some papers used the term “mutation
testing", while they are doing fault seeding, e.g., Lyu et al. [235]. The main difference
between mutation testing and error seeding is the way how to introduce defects in the
program [22]: mutation testing follows certain rules while error seeding adds the faults
directly without any particular techniques.

2.5.2. ATTRIBUTE FRAMEWORK
We consider the attribute framework to be the most subjective step in our approach: the
generalisation of the attribute framework could be influenced by the researcher’s experi-
ence as well as the reading sequence of the papers. To generate a useful and reasonable
attribute framework, we followed a two-step approach: (1) we first wrote down the facets
of interest according to our research questions and then (2) derived corresponding at-
tributes of interest. Moreover, for each attribute, we need to ensure all possible values of
each attribute are available, as well as a precise definition of each value. In this manner,
we can target and modify the unclear points in our framework quickly. In particular, we
conducted a pilot run for specifically validating our attribute framework. The results led

2.6. CONCLUSION

2

63

to several improvements to the attribute framework and demonstrated the applicability
of the framework.

2.5.3. ARTICLE CHARACTERISATION

Thanks to the complete definitions of values for each attribute, we can assign the value(s)
to articles in a systematic manner. However, applying the attribute framework to the
research body is still a subjective process. To eliminate subtle differences caused by our
interpretation, we make no further interpretation of the information extracted from the
papers in the second pilot run of validation. In particular, if a detail is not specified in a
paper, we mark it as “n/a”. Furthermore, we listed our data extraction strategies about
how to identify and classify the values of each attribute in Section 2.3.3.

2.5.4. RESULT INTERPRETATION

Researcher bias could cause a potential threat to validity when it comes to the result in-
terpretation, i.e., the author might seek what he expected for in the review. We reduce
the bias by (1) selecting all possible papers in a manner that is fair and seen to be fair and
(2) discuss our findings based on statistical data we collected from the article character-
isation. Also, our results are discussed among all the authors to reach an agreement.

2.6. CONCLUSION
In this chapter, we have reported on a systematic literature review on the application
perspective of mutation testing, clearly contrasting previous literature reviews that sur-
veyed the main development of mutation testing, and that did not specifically go into
how mutation testing is applied (e.g., [197, 241, 279]). We have characterised the stud-
ies that we have found on the basis of seven facets: (1) the role that mutation testing
has in quality assurance processes; (2) the quality assurance processes (including cate-
gories, test level and testing strategies); (3) the mutation tools used in the experiments;
(4) the mutation operators used in the experiments; (5) the description of the equivalent
mutant problem; (6) the description of cost reduction techniques for mutation testing;
and (7) the subject software systems involved in the experiments (in terms of program-
ming language, size and data availability). These seven facets pertain to our two main
research questions: RQ1 How is mutation testing used in quality assurance processes?
and RQ2 How are empirical studies related to mutation testing designed and reported?

Figure 2.1 shows our main procedures to conduct this systematic literature review. To
collect all the relevant papers under our research scope, we started with search queries in
online libraries considering 17 venues. We selected the literature that focuses on the sup-
porting role of mutation testing in quality assurance processes with sufficient evidence
to suggest that mutation testing is used. After that, we performed a snowballing proce-
dure to collect missing articles, thus resulting in a final selection of 191 papers from 22
venues. Through a detailed reading of this research body, we derived an attribute frame-
work that was consequently used to characterise the studies in a structured manner. The
resulting systematic literature review can be of benefit for researchers in the area of mu-
tation testing. Specifically, we provide (1) guidelines on how to apply and subsequently
report on mutation testing in testing experiments and (2) recommendations for future

2

64 2. A SLR OF HOW MUTATION TESTING SUPPORTS QUALITY ASSURANCE PROCESSES

work.
The derived attribute framework is shown in Table 2.3. This attribute framework

generalises and details the essential elements related to the actual application of mu-
tation testing, such as in which circumstances mutation testing is used and which muta-
tion testing tool is selected. In particular, a generic classification of mutation operators
is constructed to study and compare the mutation operators used in the experiments
described. This attribute framework can be used as a reference for researchers when
describing mutation operators. We then presented the characterisation data of all the
surveyed papers in our GitHub repository [23]. Based on our analysis of the results (in
Section 2.4), four points are key to remember:

1. Most studies use mutation testing as an assessment tool; they target the unit level.
Not only should we pay more attention to higher-level and specification mutation,
but we should also study how mutation testing can be employed to improve the
test code quality. Furthermore, we also encourage researchers to investigate and
explore more interesting applications for mutation testing in the future by asking
such questions as: what else can we mutate? (Sections 2.4.1—2.4.1)

2. Many of the supporting techniques for making mutation testing truly applicable
are still under-developed. Also, existing mutation tools are not complete with
regard to the mutation operators they offer. The two key problems, namely the
equivalent mutant detection problem and the high computation cost of muta-
tion testing issues, are not well-solved in the context of our research body (Sec-
tions 2.4.2—2.4.2).

3. A deeper understanding of mutation testing is required, such as what particular
kinds of faults mutation testing is good at finding. This would help the commu-
nity to develop new mutation operators as well as overcome some of the inherent
challenges (Section 2.4.3).

4. The awareness of appropriately reporting mutation testing in testing experiments
should be raised among the researchers (Section 2.4.3).

In summary, the work described in this chapter makes following contributions:

1. A systematic literature review of 191 studies that apply mutation testing in scien-
tific experiments, which includes an in-depth analysis of how mutation testing is
applied and reported on.

2. A detailed attribute framework that generalises and details the essential elements
related to the actual use of mutation testing

3. A generic classification of mutation operators that can be used to compare differ-
ent mutation testing tools.

4. An actual characterisation of all the selected papers based on the attribute frame-
work.

5. A series of recommendations for future work including valuable suggestions on
how to report mutation testing in testing experiments in an appropriate manner.

3
AN INVESTIGATION OF

COMPRESSION TECHNIQUES TO

SPEED UP MUTATION TESTING

Mutation testing is widely considered as a high-end test coverage criterion due to the vast
number of mutants it generates. Although many efforts have been made to reduce the
computational cost of mutation testing, in practice, the scalability issue remains. In this
chapter, we explore whether we can use compression techniques to improve the efficiency
of strong mutation based on weak mutation information. Our investigation is centred
around six mutation compression strategies that we have devised. More specifically, we
adopt overlapped grouping and Formal Concept Analysis (FCA) to cluster mutants and
test cases based on the reachability (code coverage) and necessity (weak mutation) con-
ditions. Moreover, we leverage mutation knowledge (mutation locations and mutation
operator types) during compression. To evaluate our method, we conducted a study on
20 open source Java projects using manually written tests. We also compare our method
with pure random sampling and weak mutation. The overall results show that mutant
compression techniques are a better choice than random sampling and weak mutation in
practice: they can effectively speed up strong mutation 6.3 to 94.3 times with an accuracy
of >90%.

This chapter has been published in the Proceedings of the 12th International Workshop on Mutation Analysis
(Mutation 2017) [391] (2017 IEEE International Conference on Software Testing, Verification and Validation
Workshops) and Proceedings of the 11th International Conference on Software Testing, Verification, and Vali-
dation (ICST) [392].

65

3

66 3. AN INVESTIGATION OF COMPRESSION TECHNIQUES TO SPEED UP MT

3.1. INTRODUCTION
Mutation testing has been actively investigated as a technique to evaluate the quality
of test suites [197]. The main idea is (i) to introduce small syntactic changes (mutants)
into the production code using mutation operators, and (ii) to measure the ability of
a given test suite in detecting them [279]. One of the benefits reported in literature is
that mutation testing provides a better measure of the fault detection capability of test
suites compared to other test coverage criteria [144, 228, 244]. Despite its well-known
advantages, mutation testing remains an extremely expensive activity since it requires to
re-run the test suites against each mutant, whose number increases exponentially with
the size of the program under test [93].

To address this limitation, several methods have been proposed and these can be
classified in three main categories [277]: (do fewer) selecting fewer mutants to evalu-
ate [41, 271], (do smarter) using run-time information to avoid unnecessary test execu-
tions [185, 200], (do faster) reducing the execution time for each single mutant [344].
Techniques falling into the first category are the most investigated. Indeed, researchers
have proposed various strategies to sample mutants, such as random sampling [195],
mutation operator selection [271], clustering [188], static analysis [218], and machine
learning based sampling [333].

Recently, Gopinath et al. [160] have challenged the effectiveness and efficiency of
mutation reduction strategies: their empirical evaluation with eight common mutant
reduction techniques showed that none of them provide any practical advantage over
pure random sampling. Although some techniques showed small improvements in ef-
fectiveness, the gains do not compensate for the extra overhead. Therefore, there is a
need for reduction techniques that are not only more effective, but also more efficient
compared to random sampling.

This chapter originates from the insights of Gopinath et al. [160] and focuses on the
mutant reduction technique recently proposed by our preliminary work [391]. We origi-
nally tackle the problem of reducing the cost of mutation testing by combining do fewer
and do smarter techniques through data compression methods. First, weak mutation
(do smarter) is used to determine which mutants lead to an infection state through one
single execution of the test suite against the original program. Then, formal concept
analysis [364] (FCA) is applied to derive the maximal groupings [391], which are two-way
clusters of mutants and tests. Each maximal grouping is composed of a set of mutants
M and a set of tests T with the property that any mutant in M is weakly killed by any test
in T . Finally, a do fewer strategy is applied by running one single test case (test selec-
tion) against one single mutant (mutant sampling) from each maximal grouping [391].
Our initial empirical study with five Java programs and automatically generated unit test
suites showed that FCA reduces the execution time of mutation testing by up to 85%.

In this chapter, we spot two important limitations of FCA that can affect its ability
to correctly estimate strong mutation. First, FCA groups mutants and tests according to
weak mutation only: mutants leading to an infection state when running the same test
case t (or set of tests) are assumed to be redundant. This is why only one mutant in each
maximal grouping is evaluated for strong mutation. However, mutants that are redun-
dant in terms of weak mutation are not necessarily redundant in terms of strong muta-
tion, because, for example, they are injected in different code locations (e.g., different

3.2. BACKGROUND AND RELATED WORK

3

67

methods) or are generated by different mutation operators. Second, we previously [391]
focused only on maximal groupings, which may leave some tests and/or some mutants
not assigned to any maximal grouping. As consequence, the estimated mutation score
may be inaccurate.

To overcome these limitations, we enhance FCA with (i) mutant location and (ii) mu-
tation operator type information when grouping mutants and tests according to weak
mutation. This prevents mutants infecting different statements or generated by differ-
ent operators to be inserted in the same grouping. We also investigate maximal and non-
maximal groupings to prevent final clusters from missing test cases and/or mutants.

To evaluate the benefits of our enhancements, we conducted an empirical study with
20 open-source Java projects and using the test suites manually written by the original
developers. Then, we compare the different variants of the FCA-based technique with
and without our enhancements and against weak mutation and pure random sampling
(with 10% as sampling percentage).

Our results show that FCA with our enhancements is more accurate in estimating
the (strong) mutation score compared to (i) the original FCA-based technique by our
preliminary work [391], (ii) random sampling, and (iii) weak mutation. In particular, we
find that the compression strategy based on non-maximal groupings and enriched with
mutant location information (referred as overlap+mloc in the remainder of the chapter)
estimates the strong mutation score with an average absolute error of 5% and an average
accuracy of 93% while being five time faster than strong mutation, i.e., its average speed
up is 5X. Instead, random sampling achieves a higher absolute error of 13% while requir-
ing the same execution time of overlap+mloc, i.e., its average speed up is 5X as well. The
other compression strategies lead to larger speed-up scores (up to 18X) but with the cost
of having a larger absolute error, which ranges between 5% (i.e., the absolute error of
overlap+mloc) and 13% (i.e., the absolute error of random sampling) on average. There-
fore, our findings challenge prior results [160] as we find that mutation strategies based
on compression methods (and FCA in particular) are more effective and/or more effi-
cient than random sampling. Finally, weak mutation is the fastest technique but it also
produces the largest absolute error of 23% on average.

As a final remark, we observe that all FCA-variants allow to estimate whether each
individual mutant is strongly killed or not based on relatively few test executions by re-
lying on the two-way clusters generated with FCA. Instead, random sampling does not
take into account relationships between mutants and test cases, possibly also leading to
underrepresented areas of production code in the estimation.

3.2. BACKGROUND AND RELATED WORK
In this section, we begin with an overview of mutation reduction techniques in literature
and the works that motivate our approach. Then, we introduce the crucial concepts and
theories on which our approach is based.

3.2.1. MUTATION REDUCTION STRATEGIES

Techniques for reducing the high computational cost have been an active area of re-
search. Offutt and Untch [277]’s literature review summarises these approaches into

3

68 3. AN INVESTIGATION OF COMPRESSION TECHNIQUES TO SPEED UP MT

three categories: do fewer, do smarter and do faster. The most well-known techniques for
reducing the computational cost of mutation testing are random sampling [41], selective
mutation [271], weak mutation [185] and mutant schema [345]. The aforementioned
methods are independent of the program under test which can be flexibly combined
with our methodology.

More recently, researchers have aimed to make further gains by including run-time
information; a widely-adopted strategy is to execute the test suite on the original pro-
gram before mutation execution to avoid unnecessary executions. Coverage-based op-
timisation filters out test executions when a test case does not cover the mutated state-
ment; this optimisation is in use in existing tools such as JAVALANCHE [313], Major [204]
and PIT/PiTest [3]. Infection-based optimisation on the other hand only executes a test
case on a mutant when the test infects the state of the mutant, filtering out weakly live
mutants (whose execution states are different from the original code).

Just et al. [200] improved upon this by only executing a test on a mutant if the ex-
ecution state of the mutated expression propagates to a top-level expression; they also
partitioned mutants based on their intermediate results. Ma and Kim [236] applied a
similar idea to cluster mutants for each test case by comparing the values of innermost
expressions. Compared to Just et al. [200] and Ma and Kim [236]’s, we partition mutants
for all test cases instead of targeting each test case.

Mutant clustering’s aim is to reduce the number of mutants based on the similarity of
mutants instead of random sampling. Hussain [188] applied clustering algorithms (e.g.
K-means), however, the approach requires the execution of all mutants against all the
test cases, which cannot reduce the overhead during the mutation execution. Later, Ji
et al. [195] measured the similarity of the mutants using domain analysis. They divide
mutants based on static control flow analysis. But they only manually analysed the clus-
tering accuracy without indicating the runtime overhead caused by the domain analysis.
Different from these works, our approach groups mutants based on their reachability
and necessity conditions against the tests.

An approach that eliminates redundant mutants is mutant subsumption (e.g. [46,
202, 219]). However, mutant subsumption requires full knowledge of the mutation kill
matrix, which requires the execution of every mutant against every test. Computation-
ally this process is more costly than traditional strong mutation, thus cannot be used
to speed-up mutation execution. Furthermore, test prioritization and reduction are also
used to speed up mutation testing, e.g. Zhang et al. [380].

Moreover, Zhang et al. have recently proposed Predictive Mutation Testing (PMT)
to predict mutation testing results without execution [379]. They extracted 12 features
from the programs and constructed a classification model to predict whether a mutant
is killed or surviving. Their experiment showed that PMT could improve the efficiency
of mutation testing by up to 151.4 times with a small loss in accuracy. Despite high
efficiency, their approach needs to collect a series of program features, which requires
different tools to fulfil; this is a substantial burden for the common programmer. Unlike
Zhang et al. [379], we do not require any additional program features; the weak mutation
information needed for our mutant clustering and data compression can be collected by
our tool during the initial execution against the original program.

Our approach is an extension of our preliminary work [391]. Despite the encourag-

3.2. BACKGROUND AND RELATED WORK

3

69

ing results, we have identified two important limitations of our initial methods as men-
tioned before (in Section 3.1), i.e., (1) weak mutation information is not enough; and (2)
FCA could lead to missing mutants and/or tests. To address these limitations, we pro-
pose another compressing strategy, i.e., overlapped grouping, which is the simplest and
strictest clustering method. Moreover, we take full advantage of mutation location and
operator type knowledge when compressing.

3.2.2. MUTANT COMPRESSION
We now describe the core concepts behind our approach: weak mutation and FCA-based
compression technique [391].

Weak Mutation. For a test case t to kill a mutant m which mutates the statement s
of a program P , there are three conditions [278]: (i) reachability: the execution of t must
cover s; (ii) necessity: the execution state of m is different from the execution state of s;
(iii) sufficiency: the incorrect state of m must propagate to the output causing a failure
in t .

Weak mutation uses the necessity condition, i.e., a mutant is killed if its execution
leads to a state change. For example, the expression c=a*b and its mutated version
c=a/b have different outcomes (i.e., the mutant is weakly killed) if a6=1, a 6=0 and b 6=1.
Differently from strong mutation, weak mutation scores can be computed with one sin-
gle execution of each test by instrumenting the mutated locations [149].

FCA-based compression technique [391]. Formal Concept Analysis (FCA) was origi-
nally a data analysis method and has shown to be a powerful mathematical technique
to convey and summarize large amounts of information [364]. It takes as input the for-
mal context which is a structure C = (O, A, I) where O is the set of objects, A is the set
of attributes while I µ O £ A is a binary relation between O and A. Then, FCA pro-
duces the concept lattice, which is a collection of formal concepts in the data ordered by
sub-concept relations, i.e., from super-concepts to sub-concepts. Each formal concept is
composed of (i) a group of objects sharing the same attributes, and (ii) all attributes that
apply to the objects in the concept [364].

In mutation testing context, the objects in O are the mutants, the attributes in A are
the test cases, and I is the mutant-by-test infection matrix. Then, FCA derives formal
concepts that represent groups of mutants that are weakly killed by the same subset of
tests. In other words, the output of FCA can be viewed as two-way clustering since mu-
tants and tests are grouped in concepts such that all mutants in the same concept c are
weakly killed by all tests in c. Among these concepts, FCA-based compression technique
only considers the maximal concepts that are directly connected to the exit point in the
lattice hierarchy that are referred to as maximal groupings.

After obtaining the maximal groupings from the concept lattice, this approach first
compresses the mutant-by-test infection matrix by condensing the rows, i.e., select one
mutant from each maximal grouping. Then to further perform the compression on the
columns, there are three approaches for test case selection: (i) random: randomly select
one test from each maximal grouping; (ii) Set cover based: find a sufficient subset of test
cases that weakly kill all possible mutants. i.e., at each stage, choose the test that weakly
kills the largest number of uncovered maximal groupings; (iii) Sorting-based: select the
test cases with the largest number of maximal groupings at each stage until all possible

3

70 3. AN INVESTIGATION OF COMPRESSION TECHNIQUES TO SPEED UP MT

Figure 3.1: Overall methodology of mutation compression strategies

mutants are covered.
However, as our preliminary study [391] show, applying test case selection on FCA

groupings leads to a relatively small (5.89%) reduction in execution time. Therefore, in
this chapter, we do not use test case selection. Instead, we apply dynamic coverage-
based optimisation [3, 204, 313] and infection-based optimisation [200, 236] (see Sec. 3.2)
to filter out unnecessary executions.

3.3. APPROACH

3.3.1. OVERALL METHODOLOGY
Our 6-step compression strategy is illustrated in Figure 3.1:

(1) Instrumentation. We instrument the original program to keep track of the muta-
tion locations: at every mutation point we insert all the mutants (mutated codes) right
after the original one and assign a unique id to each mutant for later activation (we ap-
plied the technique of the mutant schemata [344]). To perform weak mutation, we also
insert the comparison instructions at each mutation point to compare the intermediate
states of the original program and mutated part (we compare the state after the first ex-
ecution of the innermost expression that surrounds the mutant). We insert additional
instructions to record information of each mutant including its location, operator type
and mutation details (e.g., m1 on Line 12 applies replace constant operator: 0 ! 1).

(2) Test execution. Once instrumented, the test suite is executed once on the original
program. During this stage, we record the mutants that are touched by the tests, as well
as the ones which are weakly killed by the tests. Only the instructions related to weak
mutation and mutant information collection are executed at this stage. No mutants are
activated.

(3) Reachability and necessity analysis. The results of the previous stage are stored
in the mutant-by-test reachability and mutant-by-test necessity matrices. Let P be the

3.3. APPROACH

3

71

program under analysis and let T be the test suite; let M be the set of mutants for the
program P generated by preselected mutation operators. A mutant-by-test reachability
matrix is a m£n matrix where m is the number of mutants, n is the number of test cases
in T , and an entry xi , j is a binary value indicating whether the statement containing
the i -th mutant is executed (xi , j = 1) or not (xi , j = 0) by the j -th test 2 T . The mutant-
by-test necessity matrix has the same size as the mutant-by-test reachability matrix, but
the binary entry xi , j represents the outcome of weak mutation (xi , j = 1 indicates weakly
killed).

(4) Mutant clustering. Using the two aforementioned matrices, we apply cluster-
ing to group similar mutants together. We consider two clustering methods: (1) the
overlapped grouping, and (2) FCA grouping from our preliminary study [391] (See Sec-
tion 3.2.2).

(5) Data compression. The mutant clusters are then used to compress the mutant-
by-test matrix. The resulting matrix is likely to have lower dimensionality: the rows de-
note groups of mutants belonging to the same clusters; similarly, tests are grouped into
clusters to form the columns. The compressed matrix is then used to apply mutants and
execute tests for the strong mutation analysis. We take mutation knowledge into consid-
eration during compression to achieve higher accuracy.

(6) Mutant Execution. The compressed matrix from the previous step is then used
for the strong mutation analysis. Here, we load each mutant by its id and run the actual
mutation execution against the tests.

The details of overlapped grouping and how we use mutation knowledge are de-
scribed in the next sub-sections.

3.3.2. overlapped GROUPING
As mentioned earlier, the FCA-based compression technique could result in missing mu-
tants and/or tests. Therefore, we propose the overlapped grouping to overcome this. The
overlapped method is the simplest and strictest clustering method, i.e., elements are only
grouped together if they are identical. Specifically, we first identify distinct mutants with
regard to their reachability and necessity conditions against all the test cases. Subse-
quently, we group mutants having the same reachability and necessity conditions into
one cluster.

The main difference between overlapped and FCA grouping is that overlapped group-
ing is stricter than FCA grouping. The overlapped grouping does not lose any informa-
tion in the matrix, i.e., the clustering contains all the mutants. While FCA grouping loses
some information since the main idea of FCA is to find the maximal sub-matrixes (or
formal concepts), and if a mutant or a test does not belong to a sub-matrix, FCA removes
this mutant or test.

In our example in Figure 3.2, there are three maximal groupings, which are {m5,m6|t1, t2},
{m4|t3}, and {m3|t4}. The other concepts in the lattice (e.g., {m2,m5,m6|t1} in Fig-
ure 3.2) are already included in the maximal grouping by the sub-concept relation which
is graphically represented by the hierarchy in the lattice. As for the overlapped grouping,
it generates five clusters, i.e. {m1|t2}, {m2|t1},{m3|t4}, {m4|t3} and {m5,m6|t1, t2}. The
example shows that for the clusters generated by the overlapped grouping no mutants
are discarded, while the FCA grouping discards m1 and m2.

3

72 3. AN INVESTIGATION OF COMPRESSION TECHNIQUES TO SPEED UP MT

Figure 3.2: A toy program and its mutant clusters

3.3.3. MUTATION KNOWLEDGE
Once we have the mutant clusters, we compress the mutant-by-test infection matrix
by condensing the rows, i.e., we select one/several mutants from each cluster to rep-
resent the whole group. To select the representative mutant(s), the FCA-based tech-
nique [391] adopted a random strategy which selects one mutant from each cluster at
random, which we believe causes another limitation: based on weak mutation informa-
tion alone, FCA could mis-cluster mutants at different code locations. Thus, we enhance
FCA by adding mutation knowledge: (i) mutant location and (ii) mutation operator type.

More specifically, we investigate three mutant selection strategies: (1) random strat-
egy; (2) random strategy with knowledge of the mutation operator type1; (3) random
strategy with knowledge of the mutation location. The first one randomly chooses one
mutant from each grouping/cluster as the representative mutant. The second strategy
first divides each cluster into partitions by the type of mutation operator and then ran-
domly selects one mutant from each partition. The third strategy partitions the cluster
by the locations of the mutants (the line number) and then applies random selection;
this guarantees that at least one mutant is selected for every potential mutation point.
Notice that the second and third strategies might select more than one mutant from each
grouping/cluster, which could lead to less speed-up in strong mutation.

To sum up, we devise one mutant clustering algorithm in addition to FCA as well
as three mutant selection strategies, therefore, resulting in six compression strategies in
total (as shown in Table 3.1).

3.4. EXPERIMENTAL STUDY
We conducted an empirical study to evaluate the effectiveness of the different compres-
sion strategies presented in the previous section. The goal of the study is to answer the
following research questions:

• RQ3.1: How accurate are different compression techniques? We assess the ability

1Regarding the mutation operator type knowledge, we consider the operator type at a high level, e.g., arith-
metic replacement operators.

3.4. EXPERIMENTAL STUDY

3

73

Table 3.1: Summary of compression strategies

overlap the combination of overlapped grouping and random strategy in mutant
selection.

overlap+mop the combination of overlapped grouping and random strategy with the
knowledge of the mutation operator type in mutant selection.

overlap+mloc the combination of overlapped grouping and random strategy with the
knowledge of the mutation location in mutant selection.

fca the combination of FCA grouping and random strategy in mutant selec-
tion.

fca+mop the combination of FCA grouping and random strategy with the knowl-
edge of the mutation operator type in mutant selection.

fca+mloc the combination of FCA grouping and random strategy with the knowl-
edge of the mutation location in mutant selection.

of the six compression strategies to estimate the strong mutation scores. We also
asses their performance in comparison with random sampling and weak muta-
tion.

• RQ3.2: How do compression techniques perform in terms of speed-up? We inves-
tigate the speed-up in terms of execution time that can be obtained when using
each compression strategy over strong mutation. We also consider random sam-
pling and weak mutation as baselines.

• RQ3.3: What is the trade-off between accuracy and speed-up for the compression
techniques? We evaluate to what extent the compression strategies can reduce
execution time while maintaining an accurate estimation of the strong mutation
scores.

3.4.1. EXPERIMENTAL SETUP
To answer our research questions, we evaluated the six compression strategies using 20
open source projects publicly available on GitHub. Table 3.2 summarises the main char-
acteristics of the selected projects. These projects have been randomly selected among
the top 3000 GitHub repositories which (1) have most stars on 04/04/2017, (2) can be
built using Maven, and (3) contain JUnit 4 test suites. In our study, we focus on the
manually-written test suites available in the original project repositories.

As mentioned in Section 3.3, we first need one test execution against the original pro-
gram to collect statement coverage (i.e., the mutant-by-test reachability) and the weak
mutation information (i.e., the mutant-by-test necessity matrix). To collect weak and
strong mutation information, we implemented our own prototype tool2. The instrumen-
tation framework to generate mutants and detect the reachability and necessity condi-
tion is extracted from EvoSuite. Then, we integrated this instrumentation framework
into our mutation testing runner. We record information about test cases (#id, method
name, execution results, #touched mutants and #weakly killed mutants) and mutants

2All the tools, scripts and metadata for this experimental study are available in our GitHub repository [387].

3

74 3. AN INVESTIGATION OF COMPRESSION TECHNIQUES TO SPEED UP MT

(#id, mutation operator type, location and detailed information) for further analysis. Af-
ter that, we run each test case against each mutant of the class under test (strong mu-
tation) to establish the mutant-by-test sufficiency matrix which is used to evaluate our
methods.

The mutation operators we adopted in this experiment are six method-level opera-
tors: replace arithmetic, replace bitwise, replace comparison, replace variable,
replace constant, and insert unary. Further details about these mutation opera-
tors can be found in the paper by Fraser and Arcuri [149]. We opted for the mutation en-
gine available in EvoSuite [149] because it instruments the production code at bytecode
level and allows to directly measure the infection state for each mutant (weak mutation).
To the best of our knowledge, no publicly-available mutation tool provides utilities for
computing the weak mutation scores.

To answer the three RQs, we selected another two mutation reduction techniques
(see Section 3.2) for comparison: mutation sampling and weak mutation. We selected
random sampling (do fewer strategy) as baseline because Gopinath et al. [160, 161]
showed that none of the most common reduction strategies provide any practical ad-
vantage over pure random sampling. Moreover, we selected weak mutation (do smarter
strategy) because it is one of the key components of all mutant compression techniques.
Therefore, we considered it as an additional baseline to verify whether the other compo-
nents of the compression strategies (e.g., computing the maximal groupings) are indeed
needed. For random sampling, we set the sampling rate to 10% as suggested by Budd [93]
and Acree [41]. They showed that 10% sampling could already estimate the mutation
score with 99% of accuracy. It also corresponds to the sampling rate used by Gopinath
et al. [160, 161]. Since random sampling and the mutant compression strategies involve
random processing (i.e., in mutant selection), we carry out the corresponding random
process 100 times for each project to address their randomised nature. In total, we com-
pared eight mutation strategies: six compression strategies, random sampling (10%) and
weak mutation.

3.4.2. EVALUATION METRICS
To answer RQ3.1, we selected two well-known performance metrics: the absolute er-
ror and the accuracy. Let M be a given mutation strategy (e.g., random sampling); let
str ongM (C ,T) be the percentage of mutants for a class C that are strongly killed by the
test suite T ; let est i matedM (C ,T) be the estimated percentage of mutants that are killed
according to the strategy M ; the absolute error is defined as follows:

AE(C ,T) =| str ongM (C ,T)°est i matedM (C ,T) | (3.1)

While the compression techniques select only a subset of the mutants for strong mu-
tation, they can also estimate whether the non-selected mutants are killable by leverag-
ing the groupings generated by FCA. Therefore, we use the accuracy as further perfor-
mance metric, which is defined as follows:

accur ac y(C ,T) = (T P +T N)/tot al (3.2)

where TP denotes the number of mutants that are strongly killed by T and that are also
correctly identified by a given method M (true positives); TN is the number of mutants

3.4. EXPERIMENTAL STUDY

3

75

Table 3.2: Subject Programs

PID Project LOC #Classes #Tests COV
#Mutants

#Total #Covered
#Weakly #Strongly

Killed Killed

1 assertj 24978 830 8545 0.90 59955 21677 19533 9178
2 checkstyle 31441 524 631 0.74 79464 18777 17738 9448
3 commons-lang 26578 264 2936 0.93 45630 43597 40453 33158
4 crawler4j 3745 57 11 0.27 3046 1017 853 505
5 dex-translator 4981 32 3 0.61 5812 1015 882 493
6 distributedlog 27976 697 339 0.43 21520 593 535 395
7 dynjs 34579 672 887 0.51 29148 14688 12960 8307
8 geotools 75236 991 670 0.38 62963 19852 17024 9135
9 graphhopper 26175 384 874 0.74 50319 11176 10168 7299

10 apns 1618 39 85 0.66 905 537 487 366
11 jctools 6262 133 43 0.82 7058 425 401 302
12 jfreechart 98334 657 2256 0.54 129417 14776 13057 5669
13 jpacman 1890 61 41 0.82 1606 1355 1159 580
14 junit-quickcheck 3038 67 354 0.98 1000 995 893 786
15 pac4j 5281 146 424 0.63 2703 1934 1689 929
16 pf4j 3021 67 24 0.28 1176 380 294 205
17 stream-lib 4767 77 121 0.83 11907 9920 9445 6924
18 telegrambots 1480 21 31 0.20 772 221 196 52
19 vraptor 12021 407 385 0.83 3490 2057 1652 1072
20 zt-zip 4255 84 3 0.71 2440 1049 906 422

Overall 397656 6210 2470 0.64 520331 166041 150325 95225

Note: Column “LOC" standing for the line of code is measured by sloccount[363]. Col-
umn “#Tests" is the total number of passed test cases under our ComMT tool. We marked
the value with underline when the total number of passed test cases is less than the en-
tire test suite size.The failures of the test cases in our tool is because the dependencies
of these test cases need to be configured by Maven plugin; this cannot be solved in the
current version of ComMT. The fifth column “COV” means the line coverage of the test
suite which is measured by IntelliJ IDEA coverage runner.

that are not strongly killed by T and that are correctly identified by M (true negatives);
total denotes the total number of mutants for the class C . To ease the comparison, we
use the mean and standard deviation of absolute error and accuracy scores obtained for
all classes in a given Java project.

For RQ3.2 we consider the speed-up metric. When establishing the speed-up, we
should first consider the overhead induced by an approach. For random sampling, we
consider the overhead to be zero, as mutation sampling does not require any prerequisite
knowledge. For weak mutation, the overhead consists of one single execution of the
test suite against an instrumented version of the original program. For the compression
strategies, the overhead is composed of the overhead incurred by both weak mutation

3

76 3. AN INVESTIGATION OF COMPRESSION TECHNIQUES TO SPEED UP MT

and the compression procedure (mutant clustering and mutant selection):

over head = exec_t i me(weak_mut ati on + compr essi on) (3.3)

The speed-up metric itself is computed using strong mutation with coverage-based
optimisation as the baseline. We explicitly chose this optimisation as it is already inte-
grated into several existing mutation testing tools (e.g., JAVALANCHE [313], Major [204]
and PIT/PiTest [3]). The results of random sampling and compression strategies are the
average values over 100 runs; for weak mutation, the execution time is zero. Then, the
speed-up is defined as follows:

speed-up = exec_t i me(str ong _mut ati on)
exec_t i me(M)

(3.4)

where the denominator is the execution time of a method M computed as the sum of its
overhead and the execution time needed to run the tests against the selected mutants.

For RQ3.3, we first provide a graphical comparison among the different mutation
strategies by using the speedup-error graphs. In such a graph, the X-axis denotes the
speed-up scores and the Y-axis shows the mean absolute error achieved by each strategy
and for each project in our study; an “ideal” score would have a high X-value and a low Y-
value. We also use the speedup-accuracy graphs, which plot the speed-up (mean) on the
X-axis and the corresponding accuracy (mean) on the Y-axis; an “ideal” score would have
a high X-value and a high Y-value. Although we may see some trends via graphical anal-
ysis, we would like to know which strategy achieves the best speed-up when accepting a
given absolute error rate. Therefore, we consider the following absolute error thresholds:
æe1 = 5%, æe2 = 10%, and æe3 = 15%. Then, for each threshold æei and for each mutation
strategy M , we count the number of projects for which M achieves the highest speed-up
compared to the other strategies while yielding an absolute error score lower than æi .
Similarly, we also consider three accuracy thresholds, i.e., æa1 = 95%, æa2 = 90%, and
æa3 = 85%. Different from the absolute error, we count the number of projects in which
M achieves an accuracy higher than the threshold æai .

Statistical Analysis. To assess whether the differences among the various mutation
strategies are statistically significant or not, we adopt Friedman’s test [304] withÆ= 0.05.
It is a non-parametric test for comparing multiple treatments (mutation strategies) in the
context of a multiple-problem analysis (i.e., multiple projects) [304]; it does not require
data to be normally distributed and it is widely applied to compare randomised algo-
rithms [154, 286] (e.g., random sampling). While Friedman’s test reveals whether data
distributions differ statistically, tests for pairwise comparison are needed to determine
which treatment outperforms the others. For this, we use Conover’s post-hoc proce-
dure [104] and we further adjusted the obtained p-values using Holm-Bonferroni [181].

3.5. RESULTS

3.5.1. RQ3.1: ACCURACY
Table 3.3 reports the mean accuracy and absolute error scores for each project in our
study as well as the corresponding standard deviation scores.

Absolute error. Focusing on the absolute error we observe that weak mutation per-
forms worst with an error rate of 23% and a standard deviation of 22% on average. This

3.5. RESULTS

3

77

Table 3.3: Summary of Results for RQ3.1

Absolute Error Summary (Mean / St. Dev.) Accuracy Summary (Mean / St. Dev.)

PID
Overlap FCA Random Weak Overlap FCA Random Weak

Simple w/ Mop w/ Mloc Simple w/ Mop w/ Mloc Sampling Mutation Simple w/ Mop w/ Mloc Simple w/ Mop w/ Mloc Sampling Mutation

1 0.09/0.17 0.08/0.16 0.08/0.15 0.13/0.17 0.11/0.16 0.11/0.16 0.13/0.17 0.20/0.27 0.90/0.17 0.91/0.17 0.91/0.16 0.83/0.20 0.86/0.18 0.90/0.17 - 0.76/0.29
2 0.06/0.11 0.06/0.10 0.03/0.06 0.08/0.12 0.07/0.10 0.03/0.07 0.10/0.13 0.13/0.17 0.93/0.12 0.93/0.11 0.95/0.08 0.91/0.14 0.92/0.12 0.95/0.08 - 0.86/0.17
3 0.07/0.11 0.04/0.07 0.04/0.06 0.13/0.13 0.08/0.08 0.06/0.07 0.14/0.16 0.18/0.19 0.88/0.13 0.91/0.10 0.92/0.08 0.74/0.19 0.80/0.16 0.90/0.09 - 0.81/0.18
4 0.10/0.12 0.06/0.07 0.02/0.03 0.11/0.12 0.07/0.08 0.03/0.03 0.07/0.09 0.28/0.18 0.89/0.13 0.91/0.10 0.96/0.05 0.87/0.13 0.89/0.11 0.96/0.05 - 0.71/0.17
5 0.13/0.16 0.09/0.16 0.07/0.16 0.14/0.17 0.10/0.16 0.07/0.16 0.10/0.16 0.15/0.13 0.86/0.16 0.87/0.16 0.90/0.16 0.85/0.17 0.87/0.16 0.90/0.16 - 0.85/0.13
6 0.03/0.10 0.03/0.08 0.02/0.05 0.06/0.12 0.05/0.09 0.04/0.08 0.14/0.21 0.11/0.17 0.97/0.10 0.97/0.09 0.98/0.07 0.92/0.14 0.95/0.11 0.96/0.09 - 0.82/0.21
7 0.12/0.15 0.09/0.13 0.06/0.09 0.16/0.16 0.11/0.13 0.07/0.09 0.19/0.19 0.33/0.27 0.86/0.16 0.88/0.14 0.92/0.10 0.80/0.18 0.84/0.15 0.91/0.11 - 0.67/0.27
8 0.05/0.09 0.03/0.06 0.02/0.05 0.07/0.11 0.05/0.08 0.03/0.05 0.12/0.16 0.24/0.26 0.94/0.10 0.95/0.08 0.97/0.06 0.91/0.13 0.93/0.10 0.96/0.06 - 0.75/0.26
9 0.11/0.13 0.07/0.09 0.04/0.07 0.15/0.14 0.09/0.10 0.05/0.08 0.12/0.13 0.19/0.18 0.85/0.15 0.88/0.12 0.92/0.09 0.76/0.16 0.81/0.14 0.90/0.09 - 0.80/0.17
10 0.06/0.10 0.04/0.05 0.02/0.05 0.09/0.12 0.06/0.07 0.03/0.05 0.09/0.12 0.25/0.28 0.92/0.12 0.95/0.07 0.97/0.05 0.89/0.13 0.92/0.09 0.97/0.05 - 0.75/0.27
11 0.23/0.23 0.22/0.22 0.20/0.22 0.23/0.23 0.22/0.22 0.20/0.21 0.29/0.21 0.38/0.33 0.77/0.23 0.77/0.22 0.78/0.22 0.77/0.23 0.77/0.22 0.78/0.21 - 0.62/0.33
12 0.05/0.07 0.04/0.05 0.01/0.02 0.09/0.09 0.05/0.06 0.02/0.02 0.03/0.03 0.24/0.23 0.91/0.09 0.92/0.07 0.95/0.05 0.87/0.11 0.89/0.10 0.95/0.05 - 0.76/0.23
13 0.15/0.16 0.10/0.11 0.07/0.09 0.16/0.17 0.11/0.12 0.07/0.09 0.11/0.12 0.39/0.25 0.83/0.17 0.85/0.14 0.90/0.11 0.81/0.18 0.84/0.15 0.90/0.11 - 0.61/0.25
14 0.04/0.07 0.03/0.06 0.03/0.05 0.10/0.11 0.07/0.08 0.07/0.08 0.16/0.18 0.09/0.12 0.96/0.08 0.96/0.07 0.96/0.06 0.78/0.18 0.82/0.15 0.95/0.06 - 0.87/0.13
15 0.10/0.15 0.07/0.13 0.05/0.10 0.17/0.15 0.12/0.13 0.11/0.11 0.19/0.18 0.24/0.26 0.88/0.15 0.91/0.13 0.93/0.10 0.71/0.19 0.80/0.17 0.89/0.12 - 0.74/0.25
16 0.08/0.13 0.06/0.09 0.04/0.07 0.11/0.14 0.09/0.11 0.06/0.07 0.21/0.19 0.21/0.24 0.90/0.14 0.93/0.09 0.96/0.07 0.86/0.15 0.89/0.12 0.95/0.08 - 0.77/0.23
17 0.10/0.13 0.07/0.10 0.05/0.09 0.15/0.14 0.09/0.10 0.05/0.09 0.12/0.14 0.22/0.20 0.84/0.15 0.87/0.13 0.89/0.11 0.76/0.18 0.79/0.15 0.88/0.11 - 0.76/0.22
18 0.10/0.12 0.07/0.10 0.03/0.04 0.11/0.14 0.08/0.11 0.03/0.04 0.12/0.14 0.30/0.21 0.89/0.12 0.91/0.11 0.94/0.09 0.87/0.15 0.89/0.13 0.94/0.09 - 0.70/0.21
19 0.06/0.11 0.04/0.08 0.03/0.07 0.11/0.15 0.07/0.11 0.06/0.10 0.17/0.20 0.20/0.25 0.94/0.11 0.95/0.09 0.97/0.07 0.88/0.17 0.91/0.13 0.96/0.08 - 0.77/0.24
20 0.14/0.17 0.09/0.12 0.02/0.03 0.15/0.17 0.09/0.12 0.02/0.03 0.07/0.10 0.31/0.29 0.85/0.17 0.86/0.15 0.94/0.08 0.85/0.17 0.86/0.15 0.94/0.08 - 0.66/0.28

Mean 0.09/0.13 0.07/0.10 0.05/0.08 0.13/0.14 0.09/0.11 0.06/0.08 0.13/0.15 0.23/0.22 0.89/0.14 0.90/0.12 0.93/0.09 0.83/0.16 0.86/0.14 0.92/0.10 - 0.75/0.22

Note: The text of “St. Dev." in first row stands for standard deviation. The second, third and fourth columns (i.e., Column
“Simple", “w/ Mop" and “w/ Mloc") under Column “Overlap" correspond to method overlap, overlap+mop and over-
lap+mloc in Table 3.1. A similar rule applies to the fifth, sixth and seventh columns under Column “FCA". To be clear,
we highlight the best (the lowest in the absolute value and the highest in the accuracy) scores in bold. Also, we underline
the mean and std values of a compression technique if they are smaller (better) than the values of random sampling in
the same project.

result is due to this strategy using all mutants that are weakly covered to approximate
strong mutation coverage, yet, not all infected states propagate to changes observable in
assertions.

Moreover, overlap+mloc produces the lowest mean absolute error in 19 out of 20
projects, followed by fca+mloc and overlap+mop. Overall, the strategies using overlapped
grouping perform slightly better than FCA-based maximal groupings. To ease the com-
parison between the compression techniques and random sampling, in Table 3.3 we
underline the mean and std values of a compression technique if they are smaller (bet-
ter) than the values of random sampling in the same project. We can see that the six
compression strategies outperform random sampling in terms of absolute error scores
for most projects. The best (lowest) scores are obtained using the overlap+mop, over-
lap+mloc, fca+mop and fca+mloc approaches.

Looking at the six compression strategies, we can see that the mean absolute error
and standard deviation scores are reduced when incorporating knowledge of mutation
operators (mop) and location (mloc). For example, overlap achieves an error rate of 15%
for the jpacman project, while when adding mutation operator and location knowledge
it achieves an error rate of 10% and 7%, respectively. In general, we find that mutant lo-
cation is more important than mutation operator, as the absolute error decreases by 4%
on average, with a minimum improvement of 1% for assertj and a maximum improve-
ment of 13% for zt-zip. This is an important novel contribution distinct from most
related work, which consider mutation operators as a key element to detect redundant
mutants or subsuming mutants (e.g. [46, 202, 219]). Hence, we found that mutation
location trumps mutation operator information when selecting mutants to evaluate for
strong mutation.

According to results of Friedman’s test, the different mutation strategies achieve sig-
nificantly different absolute error values (p-value = 10°16). To better understand which
strategies perform best, Table 3.4 reports the final ranking produced by Friedman’s test as

3

78 3. AN INVESTIGATION OF COMPRESSION TECHNIQUES TO SPEED UP MT

Table 3.4: Ranking produced by Friedman’s (larger rank indicates smaller error) and Statistical Significance by
Conover’s post-hoc procedure

ID Algorithms Rank Significantly better than (PID)

(1) overlap + Mloc 8.00 (2), (3), (4), (5), (6), (7), (8)
(2) FCA + Mloc 6.55 (4), (5), (6), (7), (8)
(3) overlap + Mop 6.30 (4), (5), (6), (7), (8)
(4) FCA + Mop 4.55 (6), (7), (8)
(5) Overlap 4.40 (6), (7), (8)
(6) Random Sampling 2.70 (8)
(7) FCA 2.50 (8)
(8) Weak Mutation 1.10 -

well as the results of the pairwise comparison from Conover’s procedure. As we can ob-
serve, overlap with mutant location knowledge (mloc) is ranked first and performs signif-
icantly better than all other strategies in the comparison. FCA based on maximal group-
ings with mutant location knowledge is ranked second and statistically outperforms all
other strategies with lower ranks. Finally, random sampling is statistically worse than
all overlap strategies and FCA enhanced with mloc and mop. Instead, the original FCA
approach proposed by our preliminary study [391] is statistically equivalent to random
sampling in terms of absolute error.

Accuracy. The results for the accuracy are also reported in Table 3.3. Since random
sampling selects 10% mutants to evaluate in strong mutation, it cannot be used to es-
timate whether the other non-selected mutants are killable or not. Conversely, the six
compression strategies can estimate whether each mutant is killable even if only a few
mutants are actually evaluated for strong mutation. This is possible thanks to the two-
way clusters generated by FCA: if a mutant is strongly killed, then we assume that all
other mutants within its own cluster are killable as well. In weak mutation, we consider
as strongly killable all mutants that lead to a state infection (i.e., the weakly killed ones).

Similar to results of the absolute error, the top three strategies are overlap+mloc,
fca+mloc and overlap+mop in terms of accuracy. Again, weak mutation produces the
worst accuracy in terms of both mean and standard deviation values. The three com-
pression methods based on the overlapped grouping are slightly better than those in
FCA. These differences are due to the fact that FCA considers only the maximal group-
ings as clusters from which selecting tests and mutants to run. However, as explained
in Section 3.3, maximal groupings can miss some mutants, which therefore are not as-
signed to any cluster. Hence, we cannot accurately estimate whether the missed mutants
are likely to be strongly killed or not based on the results of other selected mutants. We
also notice that compression with additional mutant information can enhance the pred-
ication accuracy. Finally, the finding that mutation location trumps mutation operator
information still holds: the improvements range between 1% (for commons-lang) and
13% (for junit-quickcheck) in terms of accuracy.

Overlap with mutation location knowledge outperforms all other mutation strategies
in terms of both absolute error and prediction accuracy. Random sampling is statis-
tically worse than all mutant compression techniques.

3.5. RESULTS

3

79

Table 3.5: Summary of results for RQ3.2

Overhead summary (compression overhead 10°4%/ overall overhead%) Speed-up summary (selected mutant% / speed-up)

PID
Overlap FCA Overlap FCA Random Weak

Simple w/ Mop w/ Mloc Simple w/ Mop w/ Mloc Simple w/ Mop w/ Mloc Simple w/ Mop w/ Mloc Sampling Mutation

1 1.04/0.06 1.18/0.06 1.04/0.06 1.05/0.06 0.21/0.06 0.78/0.06 8.4/52.1 9.9/27.3 12.5/22.4 3.1/94.3 4.9/43.3 9.0/25.8 10.0/22.7 0/1747.8
2 0.28/0.08 0.30/0.08 0.28/0.08 0.30/0.08 0.09/0.08 0.01/0.08 1.2/32.8 2.2/27.8 12.0/7.6 0.6/42.1 1.0/34.1 3.9/7.6 10.0/7.6 0/1257.0
3 2.92/0.27 3.19/0.27 3.01/0.27 3.35/0.27 0.17/0.27 0.02/0.27 15.0/8.8 22.1/5.4 30.7/4.8 3.2/30.8 8.5/14.2 25.6/5.4 10.1/4.9 0/369.2
4 0.01/0.30 0.02/0.30 0.03/0.30 0.02/0.30 0.01/0.30 0.02/0.30 2.0/27.3 5.1/13.0 17.4/3.8 1.3/34.2 3.0/14.5 11.3/3.8 10.0/3.8 0/334.6
5 0.01/1.10 0.02/1.10 0.07/1.10 0.03/1.10 0.01/1.10 0.03/1.10 0.6/37.6 1.6/21.0 16.0/3.9 0.4/42.5 1.1/22.0 5.8/3.9 10.0/4.0 0/91.2
6 0.02/9.23 0.02/9.23 0.03/9.23 0.03/9.23 0.02/9.23 0.01/9.23 0.7/5.5 1.1/4.9 2.0/4.6 0.4/6.3 0.7/5.4 1.1/4.9 10.0/8.0 0/10.8
7 0.03/0.03 0.04/0.03 0.04/0.03 0.05/0.03 0.02/0.03 0.01/0.03 9.7/11.2 14.5/8.6 25.2/3.1 3.5/16.1 6.9/11.5 18.8/3.2 10.0/3.1 0/3280.9
8 1.56/0.23 2.09/0.23 1.97/0.23 1.93/0.23 0.41/0.23 0.18/0.23 5.2/7.0 8.2/5.2 21.5/3.0 1.7/13.2 3.4/8.3 11.4/3.1 10.0/3.1 0/432.9
9 0.11/0.18 0.15/0.18 0.13/0.18 0.13/0.18 0.02/0.18 0.01/0.18 2.7/7.8 4.5/5.7 8.6/4.2 0.7/36.9 1.9/14.4 6.2/4.9 10.0/4.3 0/561.7
10 0.01/1.08 0.02/1.08 0.02/1.08 0.05/1.08 0.02/1.08 0.01/1.08 4.5/10.1 8.2/6.4 14.2/3.9 2.0/15.0 4.3/8.2 9.4/4.1 10.0/4.1 0/92.9
11 0.03/0.32 0.08/0.32 0.08/0.32 0.12/0.32 0.08/0.32 0.07/0.32 0.6/19.8 1.5/7.6 3.5/4.8 0.5/19.8 1.0/7.6 1.8/4.8 10.0/4.9 0/310.9
12 3.95/0.21 4.43/0.21 3.86/0.21 3.78/0.21 0.16/0.21 0.03/0.21 1.0/12.0 1.6/7.4 7.4/3.9 0.2/64.9 0.5/27.9 4.1/4.0 10.0/4.0 0/481.9
13 0.01/0.16 0.02/0.16 0.02/0.16 0.03/0.16 0.02/0.16 0.01/0.16 6.5/17.8 12.8/8.3 25.4/4.6 3.9/21.9 8.4/9.9 20.6/4.7 10.0/4.7 0/630.9
14 0.03/0.91 0.07/0.91 0.07/0.91 0.11/0.91 0.03/0.91 0.03/0.91 41.1/5.6 48.2/4.6 52.9/4.2 13.3/11.1 24.5/7.2 41.5/4.4 11.4/4.4 0/110.2
15 0.15/1.29 0.37/1.29 0.37/1.29 0.45/1.29 0.18/1.29 0.12/1.29 21.0/4.8 25.5/3.9 35.4/3.0 6.2/9.1 11.1/5.9 26.3/3.1 10.0/3.2 0/77.5
16 0.39/3.01 0.83/3.01 1.00/3.01 1.58/3.01 1.22/3.01 0.84/3.01 9.9/4.6 14.5/3.5 31.3/2.1 4.9/6.8 8.2/4.1 17.7/2.2 10.0/2.3 0/33.3
17 0.00/0.16 0.01/0.16 0.01/0.16 0.01/0.16 0.00/0.16 0.00/0.16 4.9/23.9 9.8/10.7 18.7/6.3 1.3/94.6 4.1/31.0 15.2/6.4 10.0/6.3 0/626.7
18 0.00/1.56 0.01/1.56 0.01/1.56 0.01/1.56 0.00/1.56 0.00/1.56 2.5/15.8 5.2/9.1 13.6/3.9 1.3/18.1 2.7/10.4 8.5/3.9 10.0/4.2 0/63.9
19 2.55/2.48 6.57/2.48 6.38/2.48 8.59/2.48 4.66/2.48 3.19/2.48 20.7/5.1 29.5/4.0 44.7/3.1 9.4/8.7 14.6/5.6 29.5/3.1 10.8/3.3 0/40.3
20 0.01/0.09 0.04/0.09 0.07/0.09 0.09/0.09 0.04/0.09 0.02/0.09 1.1/68.5 3.4/24.4 18.6/5.4 0.9/69.0 2.1/25.7 10.2/5.4 10.0/5.5 0/1157.8

Mean 0.66/1.14 0.97/1.14 0.92/1.14 1.09/1.14 0.37/1.14 0.27/1.14 7.97/18.91 11.47/10.44 20.58/5.13 2.94/32.77 5.65/15.56 13.90/5.44 10.12/5.42 0/585.62

Note: The second, third and fourth columns (i.e., Column “Simple", “w/ Mop" and “w/ Mloc") under Column
“Overlap" correspond to method overlap, overlap+mop and overlap+mloc in Table 3.1. A similar rule applies
to the fifth, sixth and seventh columns under Column “FCA". To be clear, we highlight the highest values in
the overhead ratios and two strategies achieving the best speed-up scores in bold. Also, we underline the
compression strategies that achieve better speed-up scores than random sampling in each project.

3.5.2. RQ3.2: SPEED-UP
Speed-up performance. Table 3.5 summarises the overall speed-up for the eight ap-
proaches in our comparison. For each project, we highlight the two strategies achieving
the best speed-up scores in bold. Notice that speed-up measures the overall execution
time of strong mutation divided by the overall execution time of a mutation strategy.
Hence, higher values denote a larger improvement in execution time.

We observe that weak mutation shows the highest speed-up scores since it requires
only one test suite execution against the original program. Except for weak mutation,
FCA achieves the highest speed-up scores in 19 out of 20 cases. FCA is also faster than
random sampling, which selects 10% mutants for strong mutation. Indeed, the for-
mer is 6.6 times faster than the latter on average, with a minimum speed-up of 2.6X (in
vraptor) and a maximum one of 15.4X (in stream-lib). This is because FCA suggests
on average less than 10% of mutants (with a minimum of 0.4% of mutants) to evaluate
in strong mutation analysis. Instead, the sampling strategy constantly (and randomly)
selects 10% of mutants to execute.

The only exception to the previous finding is represented by distributedlog for
which random sampling is faster than FCA. In this case, the total percentage of mu-
tants that are injected into statements covered by the test suite (reachability condition)
is fairly low, being 2.8%. Thus, random sampling can achieve a considerable speed-up
if we leverage the coverage-based optimisation, i.e., if we skip uncovered mutants (i.e.,
mutants of uncovered statements). Instead, FCA selects almost twice as many mutants
for these projects.

To further ease the comparison, in Table 3.5 we underline the compression strate-
gies that achieve better speed-up scores than random sampling in each project. We ob-
serve that overlap, FCA+mop and overlap+mop outperform random sampling in terms of
speed-up for 19 projects out of 20. On average, they are respectively 3.7X, 3.0X, and 2.1X

3

80 3. AN INVESTIGATION OF COMPRESSION TECHNIQUES TO SPEED UP MT

Table 3.6: Ranking produced by Friedman’s (smaller rank indicates better speed-up) and statistical significance
by Conover’s post-hoc procedure

ID Algorithms Rank Significantly better than (PID)

(1) Weak Mutation 1.00 (2), (3), (4), (5), (6), (7), (8)
(2) FCA 2.10 (3), (4), (5), (6), (7), (8)
(3) Overlap 3.50 (5), (6), (7), (8)
(4) FCA + Mop 3.55 (6), (7), (8)
(5) overlap + Mop 5.05 (6), (7), (8)
(6) Random Sampling 6.25 (8)
(7) FCA + Mloc 6.65 (8)
(8) overlap + Mloc 7.90 -

faster than random sampling. It is worth noticing that the number of selected mutants
does not directly determine the overall speed-up. For example, for the project pac4j,
overlap selected 21.0% of mutants, which is larger than the percentage of mutants se-
lected by mutation sampling (i.e., 10%). However, overlap achieves a larger speed-up of
4.8X against 3.1X of mutation sampling. The reason is that compression strategies uses
weak mutation information to further filter out the unnecessary test executions, while
mutation sampling does not.

From the comparison of the six compression strategies, we observe that including
mutant location leads to selecting more mutants for strong mutation, thus, reducing the
overall speed-up. For example, overlap+mloc achieves lower speed-up scores than over-
lap in all 20 projects. Moreover, by comparing the two strategies based on mutation lo-
cation knowledge (i.e., overlap+mloc, and fca+mloc) with random sampling, we observe
that the differences in terms of speed-up are small. Indeed, the average speed-up scores
of overlap+mloc, fca+mloc and random sampling are 5.13, 5.44 and 5.42, respectively.
Instead, selecting mutants according to mutation operator generates a lower number of
mutants to evaluate in strong mutation compared to mutation location.

Our findings are confirmed by Friedman’s test (shown in Table 3.6): the mutation
strategies are statistically different in terms of speed-up scores (p-value = 10°16). Accord-
ing to Conover’s procedure, weak mutation and FCA statistically outperform all other
mutation strategies. Moreover, random sampling is ranked sixth and is statistically more
efficient than overlap+mloc only, although the difference is marginal as suggested by the
average scores reported in Table 3.5. Instead, FCA, overlap, FCA+mop and overlap+mop
are statistically superior to random sampling.

Overhead. In the previous paragraphs, we observed that most of mutation com-
pression strategies are more efficient than random sampling. Here, we investigate the
overhead that is due to the different steps that such strategies implement. In the fol-
lowing, we consider as compression overhead the execution time needed to compute the
maximal and/or overlapped groupings; while the overall overhead is the sum of the com-
pression overhead, the time for running all tests once for weak mutation, and the time to
select the mutants.

Table 3.5 reports the compression overhead and overall overhead as a percentage (ra-
tio) of the full execution time of each strategy, which also includes the time needed to run
the selected tests and mutants for strong mutation. The highest values for each project
are highlighted in bold face. From Table 3.5, we can observe that the compression over-

3.5. RESULTS

3

81

head takes up less than 0.001% of the total execution time; thus, it is negligible with re-
spect to the execution time of evaluating the selected mutants for strong mutation. The
overall overhead accounts for up to 9.30% of the total execution time and weak mutation
represents the larger portion of this overhead. Among the 20 projects, the overall over-
head of the strategy FCA is likely higher than the other compression strategies. However,
the differences among them are lower than 0.1%.

Weak mutation scores best among the eight techniques in terms of speed-up. Without
considering weak mutation, four mutant compression strategies are statistically more
efficient (have better speed-up scores) then random sampling.

3.5.3. RQ3.3: TRADE-OFFS
From the results of RQ3.1 and RQ3.2, it is clear that the mutation strategies that perform
best in terms of accuracy are also the more expensive to perform. Weak mutation and
FCA grouping strategies perform best in terms of speed-up, while the overlapped group-
ing strategies, and overlap+mloc in particular, better approximate the strong mutation
score. Therefore, in this section, we analyse the trade-offs between speed-up, absolute
error and accuracy.

From Figure 3.3, we observe that weak mutation achieves the best speed-up, while its
absolute error and accuracy typically score worst when compared to other techniques.
FCA comes second in terms of the overall speed-up, but its absolute error as well as ac-
curacy are better than weak mutation for most of the projects. We notice that overlap
is slightly slower than FCA, but shows a small improvement in both absolute error and
accuracy when compared to FCA. FCA+mop and overlap+mop have quite similar trade-
offs considering speed-up and absolute error as their data points are very close to each
other. However, in terms of speed-up and accuracy, fca+mop is slightly faster than over-
lap+mop, while overlap+mop is more accurate than fca+mop. Moreover, overlap+mloc,
fca+mloc and random sampling have the same speed-up score; however, the absolute
error of random sampling is higher than for the other two strategies. Overlap+mloc and
fca+mloc are the most accurate strategies in terms of both absolute error and accuracy,
but their speed-up performance is the least good.

Table 3.7 shows the number of projects for which each strategy M provide the best
speed-up score at different thresholds of absolute error (æei) or accuracy (æai). As we
can observe, overlap+mloc has the highest speed-up score when considering an absolute
error ∑5% for 10 projects out of 20. This indicates that using mutation location leads to
more accurate estimations of the actual strong mutation. When considering a 10% error
rate threshold, FCA+mop and FCA show the largest speed-up for the majority of projects.
Instead, when the goal is to reach an absolute error ∑15%, FCA has the best speed-up
scores for 11 out of 20 projects. Moreover, we notice that random sampling performs
worst as it has speed-up scores that are always lower then the other mutation strategies
at the same (or higher) level of absolute error.

Similar results can be observed when considering different thresholds for accuracy.
As reported in Table 3.7, overlap+mloc and fca+mloc show the best speed-up for accuracy
∏95% for the relative majority of the projects. When considering an accuracy ∏90%,
overlap and fca+mloc show the best speed-up for 5 out of 20 projects each. Instead, if

3

82 3. AN INVESTIGATION OF COMPRESSION TECHNIQUES TO SPEED UP MT

Table 3.7: Number of projects for which each strategy M j provides the best speed-up score at different thresh-
olds

(a) Error Rate

Absolute Overlap FCA Random Weak
Error Simple w/ Mop w/ Mloc Simple w/ Mop w/ Mloc Sampling Mut.

∑5% 2 4 10 0 1 3 0 0
∑10% 4 1 1 5 7 1 0 1
∑15% 1 0 1 11 3 0 0 4

overall 7 5 12 16 12 4 0 5

(b) Accuracy

Accuracy Overlap FCA Random Weak
Simple w/ Mop w/ Mloc Simple w/ Mop w/ Mloc Sampling Mut.

∏95% 2 2 9 0 0 7 - 0
∏90% 5 4 2 3 1 5 - 0
∏85% 4 2 1 8 1 1 - 3

overall 11 8 12 11 2 13 - 3

Note: The second, third and fourth columns (i.e., Column “Simple", “w/ Mop" and
“w/ Mloc") under Column “Overlap" correspond to method overlap, overlap+mop
and overlap+mloc in Table 3.1. A similar rule applies to the fifth, sixth and seventh
columns under Column “FCA". The last column “Weak Mut." stands for the strategy
of weak mutation.

we focus on 85% of accuracy, we observe that FCA is the best approach to choose as it
shows a speed-up ranging from 6.3X up to 94.3X compared to strong mutation. Finally,
if we focus on 85% accuracy, we observe that FCA is the best approach to choose.

Overlap+mloc provides the best speed-up scores when the goal is to achieve an accu-
racy >95% or an absolute error <0.05. Other mutation compression strategies provide
larger speed-up, but with a corresponding decrease in accuracy. Random sampling is
less accurate and/or slower than all compression strategies.

3.5.4. DISCUSSION
Looking at all the results, we can observe that random sampling with 10% sampling ra-
tio is able to speed up (strong) mutation testing from 2.0 to 22.7X with an absolute error
within 15% for 80% of the projects. Mutation sampling is also easy to apply in mutation
tools as it does not require any prerequisite knowledge of the program context and mu-
tation operators. However, mutation strategies based on compression techniques achieve
better speed-up (i.e., are more efficient) and/or lower absolute error than random sam-
pling. For example, overlap+mloc yields an absolute error which is always lower than 9%
with a speed-up ranging between 2.0 to 53X. This represents an important finding if we
consider the recent study by Gopinath et al. [160], which showed that other mutation re-
duction techniques (including e-selective) provide small or negligible improvements in
effectiveness and are more expensive compared to random sampling.

Another disadvantage of random sampling is that it can estimate the overall muta-

3.6. THREATS TO VALIDITY

3

83

tion score, but cannot estimate whether each mutant is strongly killable or not (it only
does for the sampled mutants). The overall mutation score is of course very impor-
tant when assessing the test suite quality at a high level; however, Coles [100, slide 57]
observed that programmers prefer to obtain specific insights into which mutants their
test suite is able to kill. From this perspective, mutation compression strategies select
a subset of “representative" mutants for the programmers to investigate. In addition,
overlap+mloc and FCA+mloc guarantee that for every possible statement that can be
mutated, at least one mutant will be selected. Although this may negatively affect the
speed-up compared to random sampling, programmers can benefit from the killable
mutant results at every possible mutant location.

3.6. THREATS TO VALIDITY
Threats to external validity: Our results are based on mutants generated by the opera-
tors implemented in EvoSuite; these results might be different when using other muta-
tion tools [220]. With regard to the subject selection, we chose 18 out of the 20 projects
from GitHub’s top starred 3000 repositories; the selected projects differ in size, number
of test cases and application domain.

Threats to internal validity: The main threat for our study is the implementation
of the compression strategies. For FCA, we use its implementation available in MAT-
LAB [245], which is a well-known scientific software. For the instrumentation and the
mutation operators, we relied on their implementation available in EvoSuite [147]. More-
over, we carefully reviewed and tested all code for our study to eliminate potential faults
in our implementation.

Threats to construct validity: The main threat is the measurement we used to eval-
uate our methods. We minimise this risk by adopting evaluation metrics that are widely
used in research, as well as proper statistical analysis to assess the significance.

3.7. CONCLUSIONS
In this chapter, we have conducted a detailed investigation of different compression
techniques to speed up mutation testing based on the work by our preliminary work [391].
We have enhanced our original FCA-based compression strategy in two distinct ways: (1)
by proposing a novel mutant clustering algorithm, overlapped grouping, in addition to
FCA; (2) by incorporating mutation location and mutation operator information in the
compression procedure. Thereby, we have introduced and investigated six compression
strategies based on two clustering algorithms and three mutant selection strategies.

The results of an empirical study with 20 open-source projects show that mutant
compression techniques can effectively speed up strong mutation testing up to 94.3
times with an accuracy > 90%. FCA is the fastest strategy while over l ap +ml oc is the
most accurate. In comparison, weak mutation attains a higher absolute error (23%) and
lower accuracy (75%). Random sampling with 10% as sampling percentage is statistically
less accurate than all mutant compression strategies, and worse in terms of speed-up
than four compression strategies (excluding the two with knowledge of mutation loca-
tions).

Another important finding is that mutation location trumps mutation operator in-

3

84 3. AN INVESTIGATION OF COMPRESSION TECHNIQUES TO SPEED UP MT

formation when selecting mutants to evaluate for strong mutation. Hence, researchers
should take into account the mutation location in addition to the mutation operators
when detecting redundant or subsuming mutants (e.g. [46, 202, 219]). This is a clear
invitation for future work.

Since our results are encouraging, we envision the following future work: (i) combin-
ing mutant location and mutation operator information; (ii) investigating other com-
pression methods, such as Principal Component Analysis [366]; (iii) applying compres-
sion techniques in mutation-based test case generation [148, 285].

3.7. CONCLUSIONS

3

85

0 1 2 3 4 5 6 7 8 9

speed-up(log)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

a
b

so
lu

te
 e

rr
o

r

overlap

overlap+mop

overlap+mloc

fca

fca+mop

fca+mloc

sample

weak

(a) Speed-up vs. absolute error

0 1 2 3 4 5 6 7 8 9

speed-up(log)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

p
re

d
ic

ti
o

n
 a

cc
u

ra
cy

overlap

overlap+mop

overlap+mloc

fca

fca+mop

fca+mloc

weak

(b) Speed-up vs. accuracy

Figure 3.3: Graphical comparison of eight mutation strategies in terms of speed-up, absolute error and accu-
racy

4
HOW TO KILL THEM ALL: AN

EXPLORATORY STUDY ON THE

IMPACT OF CODE OBSERVABILITY

ON MUTATION TESTING

Mutation testing is well-known for its efficacy to assess test quality, and it is starting to be
applied in the industry as well. However, what should a developer do when confronted
with a low mutation score? Should the test suite be plainly reinforced (i.e., writing addi-
tional tests) to increase the mutation score, or should the production code be improved as
well, to make the creation of better tests possible (i.e., improving the production code and
then writing additional tests)? In this chapter, we aim to provide a new perspective to de-
velopers that enables them to understand and reason about the mutation score in the light
of testability and observability. First, we investigate whether testability and observability
metrics are correlated with the mutation score on six open-source Java projects. We observe
a correlation between observability metrics and the mutation score, e.g., test directness,
which measures the extent to which the production code is tested directly, seems to be an
essential factor. Based on our insights from the correlation study, we propose a number of
“mutation score anti-patterns”, which enable software engineers to refactor their existing
code or adding tests to be able to improve the mutation score. In doing so, we observe that
relatively simple refactoring operations enable an improvement or increase in the muta-
tion score. Moreover, taking Object-Oriented (OO) design principles into consideration,
our study can guide developers in making choices between (1) adding new tests, (2) refac-
toring the production code, or (3) ignoring the surviving mutants when confronting the
low mutation score.

This chapter has been submitted to the Journal of Systems and Software.

87

4

88 4. AN EXPLORATORY STUDY ON THE IMPACT OF CODE OBSERVABILITY ON MT

4.1. INTRODUCTION
Mutation testing has been a very active research field since the 1970s as a technique to
evaluate test suite quality in terms of the fault-revealing capability [197]. Recent ad-
vances have made it possible for mutation testing to be used in industry [298]. For ex-
ample, PIT/PiTest [99] has been adopted by several companies, such as The Ladders and
British Sky Broadcasting [102]. Furthermore, Google [297] has integrated mutation test-
ing with the code review process for around 6000 software engineers.

As mutation testing gains traction in the industry, a better understanding of the mu-
tation score (one outcome of mutation testing) becomes essential. The existing works
have mainly linked the mutation score with test quality [189, 228] (i.e., how good is the
test suite at detecting faults in the software?) and mutant utility [203, 373] (i.e., how use-
ful is the mutant?). However, in Chapter 5, we have observed that certain mutants could
be killed only after refactoring the production code to increase the observability of state
changes. In such cases, test deficiency is not the only reason for the survival mutants, but
some issues in the production code, such as code observability, result in difficulties to kill
the mutants. Different from the previous works (e.g., [189, 203, 228, 373]), our goal is to
bring a new perspective to developers that enable them to understand and reason about
the mutation score in the light of testability and observability. Thereby, developers can
make a choice when confronting low mutation scores: (1) adding new tests, (2) refac-
toring the production code to be able to write better tests, or (3) ignoring the surviving
mutants.

To this aim, our study consists of two parts: firstly, we investigate the relationship
between testability/observability and mutation testing in order to find the most corre-
lated metrics; secondly, based on what we observe from the correlations, we define anti-
patterns or indicators that software engineers can apply to their code to kill the surviving
mutants. More specifically, we start with the investigations of the relationship between
testability/observability metrics and the mutation score inspired by the work of Bruntink
and van Deursen [89]. Testability is defined as the “attributes of software that bear on the
effort needed to validate the software product” [89, 191]. Given our context, an impor-
tant part of testability is observability, which is a measure of how well internal states of a
system can be inferred, usually through the values of its external outputs [328]. Whalen
et al. [362] formally defined observability as follows: An expression in a program is ob-
servable in a test case if the value of an expression is changed, leaving the rest of the
program intact, and the output of the system is changed correspondingly. If there is no
such value, the expression is not observable for that test. Compared to testability which
covers various aspects of a project (e.g., inheritance and cohesion), observability is more
specifically addressing the extent to which the value change of expression is observable
in a test case.

Our first three research questions steer our investigation in the first part of our study:

RQ4.1 What is the relation between testability metrics and the mutation score?

RQ4.2 What is the relation between observability metrics and the mutation score?

RQ4.3 What is the relation between the combination of testability and observability met-
rics and the mutation score?

4.2. BACKGROUND

4

89

After investigating the relationship between testability/observability and mutation
testing, we still lack insight into how these relationships can help developers to take ac-
tions when facing survival mutants. That is why, based on the observations from RQ4.1-
RQ4.3, we define anti-patterns or indicators that software engineers can apply to their
code/tests to ensure that mutants can be killed. This leads us to the next research ques-
tion:

RQ4.4 To what extent does the removal of anti-patterns based on testability and observ-
ability help in improving the mutation score?

In terms of the methodology that we follow in our study, for RQ4.1-RQ4.3, we use
statistical analysis on open-source Java projects to investigate the relationship between
testability, observability, and the mutation score. For RQ4.4, we perform a case study
with 16 code fragments to investigate whether the removal of anti-patterns increases the
mutation score.

4.2. BACKGROUND
In this section, we briefly introduce the basic concepts of and related works on mutation
testing, testability metrics, and our proposed metrics for quantifying code observability.

4.2.1. MUTATION TESTING
Mutation testing is defined by Jia and Harman [197] as a fault-based testing technique
which provides a testing criterion called the mutation adequacy score. This score can be
used to measure the effectiveness of a test suite regarding its ability to detect faults [197].
The principle of mutation testing is to introduce syntactic changes into the original pro-
gram to generate faulty versions (called mutants) according to well-defined rules (mu-
tation operators) [279]. The benefits of mutation testing have been extensively investi-
gated and can be summarised in Chapter 2 as 1) having better fault exposing capability
compared to other test coverage criteria [144, 228, 244], 2) being a valid substitute to real
faults and providing a good indication of the fault detection ability of a test suite [50, 201].

Researchers have actively investigated mutation testing for decades (as evidenced
by the extensive survey [197, 241, 279, 393]). Recently, it has started to attract attention
from industry [298]. In part, this is due to the growing awareness of the importance of
testing in software development [48]. Code coverage, the most common metric to mea-
sure test suite effectiveness, has seen its limitations being reported in numerous studies
(e.g. [144, 189, 228, 244]). Using structural coverage metrics alone might be mislead-
ing because in many cases, statements might be covered, but their consequences might
not be asserted [189]. Another factor is that a number of well-developed open-source
mutation testing tools (e.g., PIT/PiTest [99] and Mull [12]) have contributed to mutation
testing being applied in the industrial environments [102, 297, 298].

However, questions still exist about mutation testing, especially regarding the use-
fulness of a mutant [203]. The majority of the mutants generated by existing mutation
operators are equivalent, trivial and redundant [88, 198, 203, 219, 295], which reduces the
efficacy of the mutation score. If a class has a high mutation score while most mutants
generated are trivial and redundant, the high mutation score does not promise high test
effectiveness. A better understanding of mutation score and mutants is thus important.

4

90 4. AN EXPLORATORY STUDY ON THE IMPACT OF CODE OBSERVABILITY ON MT

To address this knowledge gap, numerous studies have investigated how useful mu-
tants are. Example studies include mutant subsumption [219], stubborn mutants [373],
and real-fault coupling [201, 295]. These studies paid attention to the context and types
of mutants as well as the impact of the test suite, while the impact of production code
quality has rarely been investigated. We have seen how code quality can influence how
hard it is to test [89] (called software testability [151]), and since mutation testing can
generally be considered as “testing the tests,” production code quality could also impact
mutation testing, just like production code quality has been shown to be correlated with
the presence of test smells [325]. Due to the lack of insights into how code quality affects
the efforts needed for mutation testing, especially in how to engineer tests that kill all the
mutants, we conduct this exploratory study. Our study can help researchers and practi-
tioners deepen their understanding of the mutation score, which is generally related to
test suite quality and mutant usefulness.

4.2.2. EXISTING OBJECT-ORIENTED METRICS FOR TESTABILITY
The notion of software testability dates back to 1991 when Freedman [151] formally de-
fined observability and controllability in the software domain. Voas [354] proposed a dy-
namic technique coined propagation, infection and execution (PIE) analysis for statisti-
cally estimating the program’s fault sensitivity. More recently, researchers have aimed to
increase our understanding of testability by using statistical methods to predict testa-
bility based on various code metrics. Influential works include that of Bruntink and
van Deursen [89], in which they explored the relationship between nine object-oriented
metrics and testability. To explore the relation between testability and mutation score
(RQ4.1), we first need to collect a number of existing object-oriented metrics which
have been proposed in the literature. In total, we collect 64 code quality metrics, in-
cluding both class-level and method-level metrics that have been the most widely used.
We select those 64 metrics because they measure various aspects of a project, includ-
ing basic characteristics (e.g., NLOC and NOMT), inheritance (e.g., DIT), coupling (e.g.,
CBO and FIN), and cohesion (LCOM). A large number of those metrics, such as LCOM
and HLTH have been widely used to explore software testability [89, 153] and fault pre-
diction [57, 167].

We present a brief summary of the 64 metrics in Table 4.1 (method-level) and Ta-
bles 4.2–4.3 (class-level). These metrics have been computed using a static code analysis
tool provided by JHawk [18].

4.2.3. CODE OBSERVABILITY
To explore the relation between observability and mutation score (RQ4.2), we first need
a set of metrics to quantify code observability. According to Whalen et al. [362]’s defini-
tion of observability (as mentioned in Section 4.1), we consider that code observability
comprises two perspectives: that of production code and that of the test case. To better
explain these two perspectives, let us consider the example in Listing 4.1 from project
jfreechart-1.5.0 showing the method setSectionPaint and its corresponding test.
This method is to set the section paint associated with the specified key for the PiePlot
object, and sends a PlotChangeEvent to all registered listeners. There is one mutant in
Line 3 that removes the call to org/jfree/chart/plot/PiePlot::fireChangeEvent.

4.2. BACKGROUND

4

91

Table 4.1: Summary of method-level code quality metrics

Abbreviation Full name Description

COMP Cyclomatic Complexity McCabes cyclomatic Complexity for the method
NOA Number of Arguments The number of Arguments
NOCL Number of Comments The number of Comments associated with the method
NOC Number of Comment Lines The number of Comment Lines associated with the method
VDEC Variable Declarations The number of variables declared in the method
VREF Variable References The number of variables referenced in the method
NOS Number of Java statements The number of statements in the method
NEXP Number of expressions The number of expressions in the method
MDN Max depth of nesting The maximum depth of nesting in the method
HLTH Halstead length The Halstead length of the metric (one of the Halstead Met-

rics)
HVOC Halstead vocabulary The Halstead vocabulary of the method (one of the Hal-

stead Metrics)
HVOL Halstead volume The Halstead volume of the method (one of the Halstead

Metrics)
HDIF Halstead difficulty The Halstead difficulty of the method (one of the Halstead

Metrics)
HEFF Halstead effort The Halstead effort of the method (one of the Halstead Met-

rics)
HBUG Halstead bugs The Halstead prediction of the number of bugs in the

method (one of the Halstead Metrics)
TDN Total depth of nesting The total depth of nesting in the method
CAST Number of casts The number of class casts in the method
LOOP Number of loops The number of loops (for, while) in the method
NOPR Number of operators The total number of operators in the method
NAND Number of operands The total number of operands in the method
CREF Number of classes referenced The classes referenced in the method
XMET Number of external methods The external methods called by the method
LMET Number of local methods The number of methods local to this class called by this

method
EXCR Number of exceptions referenced The number of exceptions referenced by the method
EXCT Number of exceptions thrown The number of exceptions thrown by the method
MOD Number of modifiers The number of modifiers (public, protected, etc.) in

method declaration
NLOC Lines of Code The number of lines of code in the method

This mutant is not killed by testEquals. Looking at the observability of this mutant
from the production code perspective, we can see that the setSectionPaint method
is void; thus, this mutant is hard to detect because there is no return value for the test
case to assert. From the test case perspective, although testEquals invokes the method
setSectionPaint in Line 14 and 17, no proper assertion statements are used to exam-
ine the changes of fireChangeEvent() (which is used to send an event to listeners).

Starting with two angles of code observability, we come up with a set of the code
observability metrics. Since our study is a starting point to design metrics to measure
the code observability, we start with the simple and practical metrics, which are easy for
practitioners to understand and apply.

First of all, we consider the return type of the method. As discussed in Listing 4.1,
in a void method it is hard to observe the changing states inside the method because
there is no return value for test cases to assert. Accordingly, we design two metrics,
is_void and non_void_percent (shown in 1st and 2nd rows in Table 4.5). The metric
is_void is to examine whether the return value of the method is void or not. The metric
non_void_percent addresses the return type at class level which measures the percent
of non-void methods in the class. Besides these two, a void method might change the

4

92 4. AN EXPLORATORY STUDY ON THE IMPACT OF CODE OBSERVABILITY ON MT

Table 4.2: Summary of class-level code quality metrics (1)

Abbreviation Full name Description

NOMT Number of methods The number of methods in the class (WMC - one of the Chi-
damber and Kemerer metrics)

LCOM Lack of Cohesion of Methods The value of the Lack of Cohesion of Methods metric for the
class. This uses the LCOM* (or LCOM5) calculation. (one of
the Chidamber and Kemerer metrics)

TCC Total Cyclomatic Complexity The total McCabes cyclomatic Complexity for the class
AVCC Average Cyclomatic Complexity The average McCabes cyclomatic Complexity for all of the

methods in the class
MAXCC Maximum Cyclomatic Complexity The maximum McCabes cyclomatic Complexity for all of

the methods in the class
NOS Number of Java statements The number of statements in the class
HLTH Cumulative Halstead length The Halstead length of the code in the class plus the total of

all the Halstead lengths of all the methods in the class
HVOL Cumulative Halstead volume The Halstead volume of the code in the class plus the total

of all the Halstead volumes of all the methods in the class
HEFF Cumulative Halstead effort The Halstead effort of the code in the class plus the total of

all the Halstead efforts of all the methods in the class
HBUG Cumulative Halstead bugs The Halstead prediction of the number of bugs in the code

of the class and all of its methods
UWCS Un Weighted class Size The Unweighted Class Size of the class
NQU Number of Queries The number of methods in the class that are queries (i.e.,

that return a value)
NCO Number of Commands The number of methods in the class that are commands

(i.e., that do not return a value)
EXT External method calls The number of external methods called by the class and by

methods in the class
LMC Local method calls The number of methods called by the class and by methods

in the class
HIER Hierarchy method calls The number of local methods called by the class and by

methods in the class that are defined in the hierarchy of the
class

INST Instance Variables The number of instance variables declared in the class
MOD Number of Modifiers The number of modifiers (public, protected, etc.) applied

to the declaration of the class
INTR Number of Interfaces The number of interfaces implemented by the class

field(s) of the class it belongs to. A workaround to test a void method is to invoke get-
ters. So getter_percentage (shown in 3rd row in Table 4.5) is proposed to complement
is_void.

Secondly, we come up with the access control modifiers. Let us consider the example
in Listing 4.2 from project commons-lang-LANG_3_7. The method getMantissa in class
NumberUtils returns the mantissa of the given number. This method has only one mu-
tant: the return value is replaced with “return if (getMantissa(str, str.length())
!= null) null else throw new RuntimeException”1. This mutant should be easy
to detect given an input of either a legal String object (the return value is not null) or a
null string (throw an exception). The reason this “trivial” mutant is not detected is be-
cause the method getMantissa is private. The access control modifier private makes
it impossible to directly test the method getMantissa, for this method is only visible to
methods from class NumberUtils. To test this method, the test case must first invoke a

1This mutant is generated by Return Values Mutator in PIT [103]. In Listing 4.2, getMantissa(str,
str.length()) returns a String object. When the return value of a method is an object, the mutator replaces
non-null return values with null and throw a java.lang.RuntimeException if the un-mutated method
would return null.

4.2. BACKGROUND

4

93

Table 4.3: Summary of class-level code quality metrics (2)

Abbreviation Full name Description

PACK Number of Packages imported The number of packages imported by the class
RFC Response for Class The value of the Response For Class metric for the class.

(One of the Chidamber and Kemerer metrics)
MPC Message passing The value of the Message passing metric for the class
CBO Coupling between objects The value of the Coupling Between Objects metric for the

class. (One of the Chidamber and Kemerer metrics)
FIN Fan In The value of the Fan In (Afferent coupling (Ca)) metric for

the class
FOUT Fan Out The value of the Fan Out (Efferent coupling (Ce)) metric for

the class
R-R Reuse Ratio The value of the Reuse Ratio for the class
S-R Specialization Ratio The value of the Specialization Ratio for the class
NSUP Number of Superclasses The number of superclasses (excluding Object) in the hier-

archy of the class
NSUB Number of Subclasses The number of subclasses below the class in the hierarchy.

(NOC - one of the Chidamber and Kemerer metrics)
MI Maintainability Index The Maintainability Index for the class, including the

adjustment for comments(including comments)
MINC Maintainability Index The Maintainability Index for the class without any

adjustment for comments(not including comments)
COH Cohesion The value of the Cohesion metric for the class
DIT Depth of Inheritance Tree The value of the Depth of Inheritance Tree metric for the

class. (One of the Chidamber and Kemerer metrics)
LCOM2 Lack of Cohesion of Methods

The value of the Lack of Cohesion of Methods (2) metric
for the class.This uses the LCOM2 calculation. (One of the
Chidamber and Kemerer metrics)

(variant 2)

CCOM Number of Comments The number of Comments associated with the class
CCML Number of Comment Lines The number of Comment Lines associated with the class
cNLOC Lines of Code The number of lines of code in the class and its methods

method that calls method getMantissa. From this case, we observe that access control
modifiers influence the visibility of the method, so as to play a significant role in code
observability. Thereby, we take access control modifiers into account to quantify code
observability, where we design is_public and is_static (shown in 4th and 5th rows
in Table 4.5).

The third point we raise concerns fault masking. We have observed that mutants
generated in certain locations are more likely to be masked [162], i.e., the state change
cannot propagate to the output of the method. The first observation is that mutants that
reside in a nested class. The reasoning is similar to mutants that reside in nested sec-
tions of code, namely that a change in intermediate results does not propagate to a point
where a test can pick it up. Thus, we come up with is_nested (in 6th row in Table 4.5).
Another group of mutants is generated inside nested conditions and loops. These can be
problematic because the results of the mutations cannot propagate to the output, and
the tests have no way of checking the intermediate results within the method. Accord-
ingly, we define nested_depth (shown in 7th row in Table 4.5) and a set of metrics to
quantify the conditions and loops (shown in 8th through 13th rows in Table 4.5). The
last observation is related to mutants that are inside a long method (the reason is simi-
lar to the mutants inside nested conditions and loops), thus we design method_length
(shown in 14th row in Table 4.5).

The next aspect we consider is test directness. Before we dig into test directness, we

4

94 4. AN EXPLORATORY STUDY ON THE IMPACT OF CODE OBSERVABILITY ON MT

1 public void setSectionPaint (Comparable key , Paint paint) {
2 this. sectionPaintMap .put(key , paint);
3 fireChangeEvent (); // mutant : remove this method
4 }
5
6 @Test
7 public void testEquals () {
8 ...
9 PiePlot plot1 = new PiePlot ();

10 PiePlot plot2 = new PiePlot ();
11 assertTrue (plot1 . equals (plot2));
12 assertTrue (plot2 . equals (plot1));
13 // sectionPaintMap
14 plot1 . setSectionPaint ("A", new GradientPaint (1.0f, 2.0f,
15 Color .BLUE ,3.0f, 4.0f, Color . WHITE));
16 assertFalse (plot1 . equals (plot2));
17 plot2 . setSectionPaint ("A", new GradientPaint (1.0f, 2.0f,
18 Color .BLUE ,3.0f, 4.0f, Color . WHITE));
19 assertTrue (plot1 . equals (plot2));
20 ...
21 }

Listing 4.1: Example of Method setSectionPaint in Class PiePlot and its test

1 private static String getMantissa (final String str) {
2 return getMantissa (str , str. length ());
3 }

Listing 4.2: Example of Method getMantissa in Class NumberUtils

take Listing 4.3 as an instance. Listing 4.3 shows the class Triple from project commons-
lang-LANG_3_7, which is an abstract implementation defining the basic functions of
the object and that consists of three elements. It refers to the elements as “left”, “middle”
and “right”. The method hashCode returns the hash code of the object. Six mutants
are generated for the method hashCode in class Triple. Table 4.4 summarises all the
mutants from Listing 4.3. Of those six mutants, only Mutant 1 is killed, and the other
mutants are not equivalent. Through further investigation of method hashCode and
its test class, we found that although this method has 100% coverage by the test suite,
there is no direct test for this method. A direct test would mean that the test method
directly invoking the method (production code) [59]. The direct test is useful because
it allows to control the input data directly and to assert the output of a method directly.
This example shows that test directness can influence the outcome of mutation testing,
which denotes the test case angle of code observability. Previous works such as Huo
and Clause [187] also addressed the significance of test directness in mutation testing.
Therefore, we design two metrics, direct_test_no. and test_distance (shown in
15th and 16th row in Table 4.5), to quantify test directness. Those two metrics represent
the test case perspective of code observability.

Last but not least, we take assertions into considerations. As discussed in Listing 4.1,
we have observed that mutants without appropriate assertions in place (throwing excep-
tions is also under consideration) cannot be killed, as a prerequisite to killing a mutant
is to have the tests fail in the mutated program. Schuler and Zeller [315] and Zhang and

4.3. EXPERIMENTAL SETUP

4

95

1 @Override
2 public int hashCode () {
3 return (getLeft () == null ? 0 : getLeft (). hashCode ()) ^
4 (getMiddle () == null ? 0 : getMiddle (). hashCode ()) ^
5 (getRight () == null ? 0 : getRight (). hashCode ());
6 }

Listing 4.3: Example of Method hashCode in Class Triple

Table 4.4: Summary of mutants from Listing 4.3

ID Line No. Mutator Results

1 3 negated conditional Killed
2 3 replaced return of integer sized value with (x == 0 ? 1 : 0) Survived
3 3 Replaced XOR with AND Survived
4 4 negated conditional Survived
5 4 Replaced XOR with AND Survived
6 5 negated conditional Survived

Mesbah [384] also drew similar conclusion to ours. Accordingly, we come up with three
metrics to quantify assertions in the method, assertion_no., assertion-McCabe_Ratio
and assertion_density (shown in 17th - 19th rows in Table 4.5). The assertion-
McCabe_Ratio metric [59] is originally proposed to measure test completeness by indi-
cating the ratio between the number of the actual points of testing in the test code and
the number of decision points in the production code (i.e., how many decision points
are tested). For example, a method has a McCabe complexity of 4, then in the ideal case,
we would expect 4 different assertions to test those linear independent paths (in this
case this ration would be 1), but if the ratio is lower than 1, it could be an indication
that either not all paths are tested, or that not all paths are tested in a direct way. The
assertion_density metric [217] aims at measuring the ability of the test code to detect
defects in the parts of the production code that it covers. We include those two metrics
here as a way to measure the quality of assertions. These three metrics are proposed
based on the test case perspective of code observability.

To sum up, Table 4.5 presents all the code observability metrics we propose, where
we display the name, the definition of each metric, and the category.

4.3. EXPERIMENTAL SETUP
To examine our conjectures, we conduct an experiment using six open-source projects.
We recall the research questions we have proposed in Section 4.1:

• RQ4.1: What is the relation between testability metrics and the mutation score?

• RQ4.2: What is the relation between observability metrics and the mutation score?

• RQ4.3: What is the relation between the combination of testability and observabil-
ity metrics and the mutation score?

• RQ4.4: To what extent does removal of anti-patterns based on testability and ob-
servability help in improving the mutation score?

4

96 4. AN EXPLORATORY STUDY ON THE IMPACT OF CODE OBSERVABILITY ON MT

Table 4.5: Summary of code observability metrics

Name Definition Category

1 is_void whether the return value of the method is void or
not

return type
2 non_void_percent

the percent of non-void methods in the class
(class-level)

3 getter_percentage the percentage of getter methods in the class1

4 is_public whether the method is public or not
access control modifiers

5 is_static whether the method is static or not

6 is_nested whether the method is located in a nested class
or not

fault masking

(class-level)
7 nested_depth the maximum number of nested depth (MDN from

Section 4.2.2)
8 (cond) the number of conditions (if, if-else and

switch) in the method
9 (cond(cond)) the number of nested conditions (e.g.,if{if{}})

in the method
10 (cond(loop)) the number of nested condition-loops

(e.g.,if{for{}}) in the method
11 (loop) the number of loops (for, while and do-while)

in the method (LOOP from Section 4.2.2)
12 (loop(cond)) the number of nested loop-conditions

(e.g.,for{if{}}) in the method.
13 (loop(loop)) the number of nested loop-conditions

(e.g.,for{for{}}) in the method.
14 method_length the number of lines of code in the method (NLOC

from Section 4.2.2)

15 direct_test_no. the number of test methods directly invoking the
method under test (production code)2 test directness

16 test_distance the shortest method call sequence required to
invoke the method (production code) by test
methods3

17 assertion_no. the number of assertions in direct tests
assertion

18 assertion-McCabe_Ratio the ratio between the total number of assertions
in direct tests and the McCabe Cyclomatic com-
plexity

19 assertion_density the ratio between the total number of assertions
in direct tests and the lines of code in direct tests

1A getter method must follow three patterns [49]: (1) must be public; (2) has no arguments and its return type
must be something other than void. (3) have naming conventions: the name of a getter method begins with “get”
followed by an uppercase letter.
2If the method is not directly tested, then its direct_test_no. is 0.
3If the method is directly tested, then its test_distance is 0. The maximum test_distance is set Integer.
MAX_VALUE in Java which means there is no method call sequence that can reach the method from test meth-
ods.

4.3.1. MUTATION TESTING

We adopt PIT (Version 1.4.0) [99] to apply mutation testing in our experiments. The
mutation operators we adopt are the default mutation operators provided by PIT [103]:
Conditionals Boundary Mutator, Increments Mutator, Invert Negatives Mutator,
Math Mutator, Negate Conditionals Mutator, Return Values Mutator and Void
Method Calls Mutator. We did not adopt the extended set of mutation operators pro-
vided PIT, as the operators in the default version are largely designed to be stable (i.e.,
not be too easy to detect) and minimise the number of equivalent mutations that they

4.3. EXPERIMENTAL SETUP

4

97

Table 4.6: Subject systems

PID Project LOC #Tests
#Methods #Mutants

#Total #Selected #Total #Killed

1 Bukkit-1.7.9-R0.2 32373 432 7325 2385 7325 947
2 commons-lang-LANG_3_7 77224 4068 13052 2740 13052 11284
3 commons-math-MATH_3_6_1 208959 6523 48524 6663 48524 38016
4 java-apns-apns-0.2.3 3418 91 429 150 429 247
5 jfreechart-1.5.0 134117 2175 34488 7133 34488 11527
6 pysonar2-2.1 10926 269 3070 719 3074 836

Overall 467017 13558 106888 19790 106892 62857

Note: Column “LOC" standing for the line of code is measured by sloccount[363]. In our exper-
iment, we remove the methods with no generated mutant by PIT, thus resulting in the number
of selected methods (#Selected).

generate [103].

4.3.2. SUBJECT SYSTEMS
We use six systems publicly available on GitHub in this experiment. Table 4.6 sum-
marises the main characteristics of the selected projects, which include the lines of code
(LOC), the number of tests (#Test), the total number of methods (#Total Methods), the
number of selected methods used in our experiment (#Selected), the total number of
mutants (#Total Mutants), and the killed mutants (#Killed). In our experiment, we re-
move the methods with no generated mutant by PIT, thus resulting in the number of se-
lected methods (#Selected). These systems are selected because they have been widely
used in the research domain (e.g., [187, 315, 378, 384, 392]). All systems are written in
Java, and tested by means of JUnit. The granularity of our analysis is at method-level.

The results of the mutants that are killable for all of the subjects are shown in Columns
7-8 of Table 4.6. Figure 4.1a shows the distribution of mutation score among selected
methods. The majority of the mutation scores are either 0 or 1. Together with Figure 4.1b,
we can see that the massive number of 0s and 1s are due to the low mutant number per
method. Most methods show less than 10 mutants, which is mainly due to most methods
being short methods (NOS < 2 as shown in Figure 4.2). Writing short methods is a pre-
ferred strategy in practice, for a long method is a well-known code smells [70]. Besides,
PIT adopts several optimisation mechanisms [101] to reduce the number of mutants.
Thus, the number of mutants (#Total Mutants) shown in Table 4.6 is fewer than the ac-
tual number of generated mutants. The large number of the methods with low mutant
number is an unavoidable bias in our experiment.

4.3.3. TOOL IMPLEMENTATION
To evaluate the code observability metrics that we have proposed, we implement a pro-
totype tool (coined MUTATION OBSERVER) to capture all the necessary information from
both the program under test and the mutation testing process. This tool is openly avail-
able on GitHub [390].

Our tool extracts information from three parts of the system under test (in Java):
source code, bytecode, and tests. Firstly, Antlr [1] parses the source code to obtain the
basic code features, e.g., is public, is static and (cond). Secondly, we adopt Apache Com-

4

98 4. AN EXPLORATORY STUDY ON THE IMPACT OF CODE OBSERVABILITY ON MT

(a) Distribution of mutation score per method

(b) Distribution of total mutant No. per method

Figure 4.1: Distribution of mutation score and mutant No.

mons BCEL [2] to parse the bytecode. Then, java-callgraph [17] generates the pairs
of method calls between the source code and tests, which we later use to calculate direct

4.3. EXPERIMENTAL SETUP

4

99

Figure 4.2: Distribution of Number of Java Statements (NOS) per method

WeVWV

ASacKe
CRPPRQV
BCEL

LQSXW RXWSXWMXWaWLRQ ObVeUYeU

VRXUce
cRde

b\WecRde

PXWaQW
NLOOabOe
UeVXOWV

PXWaQW
RbVeUYabLOLW\

VPeOOV
MaYacaOOgUaSK

WeVW
dLUecWQeVV

cRde
feaWXUeV

Figure 4.3: Overview of MUTATION OBSERVER architecture

test no. and other test call related metrics. The last part is related to the mutation testing
process, for which we adopt PIT (Version 1.4.0) [99] to obtain the killable mutant results.
An overview of the architecture of MUTATION OBSERVER can be seen in Figure 6.4.

4

100 4. AN EXPLORATORY STUDY ON THE IMPACT OF CODE OBSERVABILITY ON MT

4.3.4. DESIGN OF EXPERIMENT

RQ4.1-RQ4.3
Our investigation of the relationships between testability/observability metrics and the
mutation score (RQ4.1-RQ4.3) is two-fold: in the first part, we adopt Spearman’s rank-
order correlation to measure the pairwise correlations statistically between each metric
(both testability and observability metrics) and the mutation score; in the second part,
we turn the correlation problem into a binary classification problem (where we adopt
Random Forest as the classification algorithm) to investigate how those metrics interact
with one another.

Pairwise correlations To answer RQ4.1, RQ4.2, and RQ4.3, we first adopt Spearman’s
rank-order correlation to statistically measure the correlation between each metric (both
testability and observability metrics) and the mutation score of the corresponding meth-
ods or classes. Spearman’s correlation test checks whether there exists a monotonic rela-
tionship (linear or not) between two data samples. It is a non-parametric test and, there-
fore, it does not make any assumption about the distribution of the data being tested.
The resulting coefficient Ω takes values in the interval [°1;+1]; the higher the correla-
tion in either direction (positive or negative), the stronger the monotonic relationship
between the two data samples under analysis. The strength of the correlation can be
established by classifying into “negligible” (|Ω| < 0.1), “small” (0.1 ∑ |Ω| < 0.3), “medium”
(0.3 ∑ |Ω| < 0.5), and “large” (|Ω| ∏ 0.5) [178]. Positive Ω values indicate that one distri-
bution increases when the other increases as well; negative Ω values indicate that one
distribution decreases when the other increases.

The mutation score2 is calculated by Equation 4.1 (method-level).

mut ati on scor e (A) = # ki l l ed mut ant s i n method A
tot al mut ant s i n method A

(4.1)

We adopt Matlab [246] to calculate the Spearman’s rank-order correlation coefficient
between each metric and the mutation score. In particular, we used the statistical anal-
ysis (corr function with the option of “Spearman” in Matlab’s default package3).

Interactions Except for the pairwise correlations between each metric and the muta-
tion score, we are also interested in how those metrics interact with one another. To do
so, we first turn the correlation problem into a binary classification problem. We use 0.5
as the cutoff between HIGH and LOW mutation core because 0.5 is widely used as a cutoff
in classification problems whose independent variable ranges in [0,1] (e.g., defect pre-
diction [340, 377]). We consider all the metrics to predicate whether the method belongs
to classes with HIGH or LOW mutation score. One thing to notice here is that building a
perfect prediction model is not our primary goal. Our interest is to see which metrics
and/or which combinations of the metrics contributing to the LOW mutation score by

2In the original equation for mutation score, the divisor is the number of non-equivalent. In our study, our main focus is
the relation between testability/observability metrics and mutation score, rather than mutation score itself. In our previous
literature review (Chapter 2), we have found that treating all mutants as non-equivalent is a common method when the
mutation score is used as a relative comparison. Therefore, we do not manually analyse the equivalent mutants, and treated
all mutants as non-equivalent.

3https://www.mathworks.com/help/stats/corr.html

4.3. EXPERIMENTAL SETUP

4

101

building the prediction models. Therefore, deciding different thresholds values is out-
side the scope of this chapter.

For prediction, we adopt Random Forest [83] as the classification algorithm, where
we use WEKA [143] to build the prediction model. Random Forest is an ensemble method
based on a collection of decision tree classifiers, where the individual decision trees
are generated using a random selection of attributes at each node to determine the
split [169]. Besides, Random Forest is more accurate than one decision tree, and it is not
affected by the overfitting problem [169]. The reasons why we adopted Random Forest
rather than linear regression here are as follows: (1) Random Forest is a more advanced
method, and it can usually achieve high accuracy and avoid overfitting when consider-
ing many attributes. (2) We did build the linear regression in the first place. As the linear
regression model enables to predict a certain value (i.e., the mutation score), it incurs far
higher cross-validation errors than Random Forest.

As our investigation includes testability and observability metrics, for each project,
we compare three types of classification models: (1) a model based on merely existing
testability metrics, (2) a model based on merely code observability metrics, and (3) a
model based on the combination of existing and our observability metrics (overlapping
metrics, e.g., method_length to NLOC, are only considered once). In particular, we in-
clude the model based on the combination of the two aspects for further comparison:
to see whether the combination of the two aspects can work better than each aspect
itself. To examine the effectiveness of Random Forest in our dataset, we also consider
ZeroR, which classifies all the instances to the majority and ignores all predictors, as
the baseline. It might be that our data is not balanced, as in that one project has over
90% methods with a HIGH mutation score. This could entail that the classification model
achieving 90% accuracy is not necessarily an effective model. In this situation, ZeroR
could also achieve over 90% accuracy in that scenario. Our Random Forest model must
thus perform better than ZeroR; otherwise, the Random Forest model is not suitable for
our dataset.

In total, we consider four classification models: 1) ZeroR (i.e., the constant classi-
fier), 2) Random Forest based on existing metrics, 3) Random Forest based on code ob-
servability metrics, and 4) Random Forest based on the combination of existing metrics
and code observability metrics. To build Random Forest, WEKA [143] adopts bagging in
tandem with random attribute selection. We use WEKA’s default parameters to train the
Random Forest model, i.e., “-P 100 -I 100 -num-slots 1 -K 0 -M 1.0 -V 0.001 -S 1”. To eval-
uate the performance of the classifier model (e.g., precision and recall), we use 10-fold
cross validation [214].

In terms of feature importance, we apply scikit-learn [296] to conduct the analy-
sis. To determine the feature importance, scikit-learn [296] implements “Gini Impor-
tance" or “Mean Decrease Impurity" [84]. The importance of each feature is computed by
the probability of reaching that node (which is approximated by the proportion of sam-
ples reaching that node) averaged over total tree ensembles [84]. We use the method of
feature_importances_ in sklearn.ensemble.RandomForestRegressor 4 package
to analyse the feature importance.

4https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestRegressor.html

4

102 4. AN EXPLORATORY STUDY ON THE IMPACT OF CODE OBSERVABILITY ON MT

RQ4.4
To answer RQ4.4, we first need to establish the anti-patterns (or smells) based on these
metrics. An example of an anti-pattern rule generated from the metrics is method_length
> 20 and test_distance> 2. In this case, it is highly likely that the method has low mu-
tation score. To obtain the anti-pattern rules, we adopt J48 to build a decision tree [143,
301]. We consider J48 because of its advantage in interpretation over Random Forest. Af-
ter building the decision tree, we rank all leaves (or paths) according to instances falling
into each leaf and accuracy. We select the leaves with the highest instances and accu-
racy ∏ 0.8 for further manual analysis, to understand to what extent refactoring of the
anti-patterns can help in improving the mutation score.

4.3.5. EVALUATION METRICS

For RQ4.1, RQ4.2, and RQ4.3, to ease the comparisons of the four classification models,
we consider four metrics which have been widely used in classification problems: pre-
cision, recall, AUC, and the mean absolute error. To that end, we first introduce four key
notations: TP, FP, FN, and TN, which denotes true positive, false positive, false negative,
and true negative, respectively.

In our case, we cannot decide which class is positive or not, or in other words, we can-
not say HIGH mutation score is what we expect. The goal to use a prediction model is to
investigate the interactions between those metrics or how they interact with each other.
So we adopt weighted precision and recall, which also take the number of instances in
each class into consideration.

Weighted precision. The precision is the fraction of true positive instances in the in-
stances that are predicted to be positive: TP/(TP+FP). The higher the precision, the fewer
false positives. The weighted precision is computed as follows, where pc1 and pc2 are the
precisions for class 1 and class 2, and |c1| and |c2| are the number of instances in class 1
and class 2, respectively:

wei g hted pr eci si on = pc1 £ |c1|+pc2 £ |c2|
|c1|+ |c2| (4.2)

Weighted recall. The recall is the fraction of true positive instances in the instances
that are actual positives: TP/(TP+FN). The higher the recall, the fewer false negative er-
rors there are. The weighted recall is computed as follows, where rc1 and rc2 are the
recalls for class 1 and class 2, and |c1| and |c2| are the number of instances in class 1 and
class 2:

wei g hted r ecal l = rc1 £ |c1|+ rc2 £ |c2|
|c1|+ |c2| (4.3)

AUC. The area under ROC curve, which measures the overall discrimination ability
of a classifier. An area of 1 represents a perfect test; an area of 0.5 represents a worthless
test.

Mean absolute error. The mean of overall differences between the predicted values
and actual values.

4.4. RQ4.1 - RQ4.3 TESTABILITY VERSUS OBSERVABILITY VERSUS COMBINATION

4

103

Table 4.7: Spearman results of existing code metrics for testability

metric rho p-value metric rho p-value metric rho p-value

COMP 0.0398 2.16E-08 NOC 0.1908 1.254E-161 R-R(class) -0.2524 3.721E-285
NOCL 0.1047 2.32E-49 NOA 0.0423 2.723E-09 NSUB(class) -0.0048 0.5009
NOS -0.0139 0.05024 CAST -0.0162 0.02302 NSUP(class) -0.2634 0
HLTH 0.0518 2.927E-13 HDIF 0.1334 2.691E-79 NCO(class) -0.0751 3.602E-26
HVOC 0.0485 8.831E-12 NEXP 0.0288 5.135E-05 FOUT(class) -0.1073 9.482E-52
HEFF 0.0856 1.595E-33 NOMT(class) 0.0981 1.564E-43 DIT(class) -0.2634 0
HBUG 0.0518 3.163E-13 LCOM(class) 0.0564 2.125E-15 CCOM(class) 0.1695 1.589E-127
CREF 0.0193 0.00653 AVCC(class) 0.0405 1.206E-08 COH(class) 0.0001 0.9852
XMET 0.0465 5.743E-11 NOS(class) 0.0793 5.416E-29 S-R(class) 0.0016 0.8184
LMET -0.0221 0.00191 HBUG(class) 0.0824 3.826E-31 MINC(class) -0.0255 0.0003272
NLOC -0.0004 0.95 HEFF(class) 0.0982 1.213E-43 EXT(class) -0.0636 3.314E-19
VDEC 0.0281 7.702E-05 UWCS(class) 0.0929 3.708E-39 INTR(class) -0.0571 9.413E-16
TDN 0.0408 9.634E-09 INST(class) 0.0045 0.5238 MPC(class) -0.0636 3.314E-19
NAND 0.0357 5.191E-07 PACK(class) -0.1029 9.956E-48 HVOL(class) 0.0823 4.344E-31
LOOP 0.0685 5.116E-22 RFC(class) 0.095 6.38E-41 HIER(class) -0.212 6.066E-200
MOD 0.0103 0.1482 CBO(class) -0.0157 0.0274 HLTH(class) 0.0911 9.53E-38
NOPR 0.067 3.801E-21 MI(class) 0.0482 1.144E-11 SIX(class) -0.197 2.388E-172
EXCT 0.1125 9.723E-57 CCML(class) 0.1559 6.998E-108 TCC(class) 0.0897 1.203E-36
MDN 0.053 8.3E-14 NLOC(class) 0.0756 1.692E-26 NQU(class) 0.1489 1.568E-98
EXCR -0.0067 0.3473 RVF(class) -0.033 3.498E-06 F-IN(class) 0.0875 6.031E-35
HVOL 0.0512 5.719E-13 LCOM2(class) -0.0486 7.691E-12 MOD(class) 0.0516 3.738E-13
VREF 0.0446 3.42E-10 MAXCC(class) -0.0178 0.01245 LMC(class) 0.1034 3.68E-48

Note: Column“rho” represents the pairwise correlation coefficient between each code metric and the mu-
tation score. Column“p-value" denotes the strength of evidence for testing the hypothesis of no correlation
against the alternative hypothesis of a non-zero correlation using Spearman’s rank-order. For p-values, we
use 0.05 as the cutoff for significance. For convenience, we highlighted the p-values higher than 0.05 by
underlining; those correlation results are not statistically significant. Also, we highlight the top 4 metrics in
bold face in terms of absolute value of rho.

4.4. RQ4.1 - RQ4.3 TESTABILITY VERSUS OBSERVABILITY VER-
SUS COMBINATION

We opt to discuss the three research questions, RQ4.1, RQ4.2, and RQ4.3, together, be-
cause it gives us the opportunity to compare testability, observability, and their combi-
nation in detail.

4.4.1. SPEARMAN’S RANK ORDER CORRELATION

TESTABILITY

Findings Table 4.7 presents the overall results of Spearman’s rank-order correlation
analysis for existing code metrics. The columns of “rho” represent the pairwise cor-
relation coefficient between each code metric and the mutation score. The p-values
columns denote the strength of evidence for testing the hypothesis of no correlation
against the alternative hypothesis of a non-zero correlation using Spearman’s rank-order.
Here we used 0.05 as the cutoff for significance. From Table 4.7 , we can see that except
for NOS, NLOC, MOD, EXCR, INST(class), NSUB(class), COH(class) and S-R(class)
(which, for convenience, we highlighted by underlining the value), the correlation re-
sults for the metrics are all statistically significant.

Overall, the pairwise correlation between each source code metric and the mutation

4

104 4. AN EXPLORATORY STUDY ON THE IMPACT OF CODE OBSERVABILITY ON MT

score is not strong (|r ho| < 0.27). We speculate the reason behind the weak correla-
tions to be collinearity of these code metrics. More specifically, Spearman’s rank-order
correlation analysis only evaluates the correlation between individual code metric and
mutation score. Some code metrics could interact with one another. For example, a long
method does not necessarily have a low mutation score. Alternatively, another example:
if there are more than four loops in a long method, then the method is very likely to have
low mutation score. That is also an example of the collinearity, i.e., the number of loops
and the method length are highly correlated.

From Table 4.7, we can see that the highest rho5 is -0.2634 for both NSUP (class)
standing for Number of Superclasses, and DIT(class), or Depth of Inheritance Tree.
Followed by R-R(class), for Reuse Ratio, and HIER(class), for Hierarchy method calls.
At first glance, the top 4 metrics are all class-level metrics. However, we cannot infer that
class-level metrics are more impactful on the mutation score than method-level ones. In
particular, it can be related to the fact that we have considered more class-level metrics
than method-level ones in the experiment.

Additionally, we expected that the metrics related to McCabe’s Cyclomatic Complex-
ity, i.e., COMP, TCC, AVCC and MAXCC would show stronger correlation to the mutation
score. In fact, McCabe’s Cyclomatic Complexity has been widely considered as a power-
ful measure to quantify the complexity of a software program, and it is used to provide a
lower bound to the number of tests that should be written [140, 157, 369]). Based on our
results without further investigation, we could only speculate that McCabe’s Cyclomatic
Complexity might not directly influence the mutation score.

Summary We found that the pair-wise correlations between the 64 existing source code
metrics and the mutation score to be not so strong (|r ho| < 0.27). The top 4 metrics with
the strongest correlation coefficients are NSUP(class), DIT(class), R-R(class) and
HIER(class).

OBSERVABILITY

Findings Table 4.8 shows the overall results of Spearman’s rank-order correlation anal-
ysis for code observability metrics. From Table 4.8, we can see that except for method_length
and (cond(loop)), whose p-value is greater than 0.05, the results of the other observ-
ability metrics are statistically significant. The overall correlation between code observ-
ability metrics and mutation score is still not strong (<0.5), but significantly better than
existing code metrics (<0.27). The top five metrics are test_distance, direct_test_no.,
assertion-density, assertion-McCabe and assertion_no. The metrics related to
test directness, i.e., test_distance (-0.4923) and direct_test_no (0.4177) are ranked
first in terms of rho among all metrics that we consider (including existing code metrics
in Section 4.2.2). This observation corresponds to our hypothesis in Section 4.2.3 that
the methods with no direct tests are more challenging to kill mutants. In terms of rho
values, the assertion related metrics are ranked after test directness related metrics; this
confirms both our conjectures in Section 4.2.3 and what has been reported in the related
literature [315, 384] that the quality of assertions can influence the outcome of mutation
testing.

5In terms of absolute value.

4.4. RQ4.1 - RQ4.3 TESTABILITY VERSUS OBSERVABILITY VERSUS COMBINATION

4

105

Table 4.8: Spearman results of code observability metrics

metric rho p-vlaue metric rho p-vlaue

is_public -0.0639 2.35E-19 (cond(cond)) -0.0415 5.4E-09
is_static 0.1137 6.29E-58 (cond(loop)) 0.0073 0.302
is_void -0.1427 1.42E-90 (loop) 0.0685 5.12E-22
is_nested 0.0466 5.38E-11 (loop(cond)) 0.0216 0.00242
method_length -0.0004 0.95 (loop(loop)) 0.0428 1.65E-09
nested_depth 0.053 8.3E-14 non_void_percent 0.2424 1.24E-262
direct_test_no 0.4177 0 getter_percent -0.153 6.23E-104
test_distance -0.4921 0 assertion-McCabe 0.3956 0
assertion_no 0.3858 0 assertion-density 0.4096 0
(cond) 0.023 0.00124

Note: Column“rho” represents the pairwise correlation coefficient between
each code metric and the mutation score. Column“p-value" denotes the
strength of evidence for testing the hypothesis of no correlation against the
alternative hypothesis of a non-zero correlation using Spearman’s rank-order.
For p-values, we use 0.05 as the cutoff for significance. For convenience, we
highlighted the p-values higher than 0.05 by underlining; those correlation re-
sults are not statistically significant. Also, we highlight the top 5 metrics in bold
face in terms of absolute value of rho.

Table 4.9: Random forest results of code observability metrics vs. existing metrics

pid
ZeroR existing code observability combined

prec. recall AUC err. prec. recall AUC err. prec. recall AUC err. prec. recall AUC err.

1 - 0.856 0.497 0.2465 0.927 0.93 0.961 0.1014 0.940 0.942 0.960 0.0786 0.946 0.948 0.976 0.0741
2 - 0.913 0.498 0.1595 0.947 0.951 0.932 0.0775 0.960 0.962 0.946 0.063 0.957 0.959 0.951 0.067
3 - 0.815 0.499 0.3015 0.848 0.861 0.836 0.2039 0.866 0.864 0.871 0.1727 0.887 0.893 0.909 0.167
4 - 0.507 0.468 0.5001 0.667 0.667 0.733 0.3831 0.861 0.860 0.909 0.2044 0.827 0.827 0.887 0.2626
5 - 0.62 0.5 0.4712 0.842 0.843 0.908 0.2347 0.868 0.869 0.931 0.1801 0.901 0.901 0.955 0.168
6 - 0.726 0.493 0.3982 0.73 0.743 0.804 0.2948 0.708 0.716 0.779 0.2976 0.742 0.755 0.802 0.2946

all - 0.569 0.5 0.4905 0.862 0.862 0.928 0.2133 0.864 0.864 0.937 0.1846 0.905 0.905 0.963 0.1625
dir. - 0.853 0.499 0.2513 0.945 0.946 0.949 0.0915 0.941 0.943 0.955 0.0933 0.950 0.951 0.962 0.0886
non. - 0.593 0.5 0.4829 0.853 0.853 0.923 0.2329 0.813 0.814 0.893 0.2371 0.878 0.879 0.941 0.2075

Note: Column“prec.” represents “precision" (as shown in Section 4.3.5). Column “err." stands for “Mean absolute error"
(as shown in Section 4.3.5). To make clear which model performs better than the others, we highlight the values of the
model achieving the best performance among the four in bold, that of second best in underline. The 7th row marked
with “all” means that the results are based on the overall database (among all projects). The 8th row marked with “dir.”
means that the results are based on the methods with direct tests (among all projects). The 9th row marked with “non.”
means that the results are based on the methods with no direct tests (among all projects).

Summary The correlations between code observability metrics and mutation score are
not very strong (<0.5); however, they are significantly better than the correlations for ex-
isting code metrics. Test directness (test_distance and direct_test_no.) takes the
first place of NSUP(class) in |r ho| among all metrics (including existing ones in Sec-
tion 4.2.2), followed by assertion-based metrics (assertion-density, assertion-McCabe

and assertion_no).

4.4.2. RANDOM FOREST
Classification effectiveness As discussed in Section 4.3.4, we compare the four models
in terms of both our code observability metrics and the existing metrics, namely:

1. ZeroR: model using ZeroR approach

4

106 4. AN EXPLORATORY STUDY ON THE IMPACT OF CODE OBSERVABILITY ON MT

Table 4.10: Feature importance of classification model among different projects (1)

1 2 3 4 5

metric imp. metric imp. metric imp. metric imp. metric imp.

test_distance 0.35 test_distance 0.15 test_distance 0.13 test_distance 0.48 test_distance 0.23
NLOC(class) 0.15 HIER(class) 0.12 NOCL 0.05 method_length 0.03 is_void 0.1
NOCL 0.03 CCML(class) 0.05 HDIF 0.03 COMP 0.03 EXCT 0.04
CREF 0.03 NLOC(class) 0.05 MI(class) 0.03 NOCL 0.03 NOCL 0.03
MINC(class) 0.03 NOCL 0.04 is_static 0.02 CAST 0.03 NOS 0.03
non_void_percent 0.02 MI(class) 0.04 non_void_percent 0.02 HDIF 0.03 S-R(class) 0.03
HDIF 0.02 assertion-density 0.03 HVOC 0.02 (cond) 0.02 is_public 0.02
NOS(class) 0.02 CREF 0.03 HEFF 0.02 VREF 0.02 nested_depth 0.02
PACK(class) 0.02 HDIF 0.03 CREF 0.02 is_void 0.01 direct_test_no 0.02
TCC(class) 0.02 PACK(class) 0.03 VREF 0.02 direct_test_no 0.01 assertion_no 0.02
LMC(class) 0.02 method_length 0.02 NEXP 0.02 assertion_no 0.01 CREF 0.02
HLTH 0.01 HVOC 0.02 HEFF(class) 0.02 non_void_percent 0.01 HDIF 0.02
HVOC 0.01 HEFF 0.02 PACK(class) 0.02 assertion-density 0.01 PACK(class) 0.02
HEFF 0.01 LMET 0.02 CBO(class) 0.02 HLTH 0.01 F-IN(class) 0.02
XMET 0.01 NOA 0.02 CCML(class) 0.02 HVOC 0.01 method_length 0.01

Note: Column “imp." denotes “feature importance" mentioned in 4.3.4.

Table 4.11: Feature importances of classification model among different projects (2)

6 all dir. non-dir.

metric imp. metric imp. metric imp. metric imp.

CBO(class) 0.09 test_distance 0.29 is_void 0.22 test_distance 0.16
HDIF 0.07 PACK(class) 0.06 PACK(class) 0.13 NOCL 0.09
NQU(class) 0.06 NOCL 0.05 HDIF 0.05 non_void_percent 0.04
test_distance 0.04 is_void 0.03 NOS 0.04 EXCT 0.04
non_void_percent 0.03 EXCT 0.03 assertion-density 0.03 HDIF 0.03
HVOC 0.03 non_void_percent 0.02 NEXP 0.03 PACK(class) 0.03
HEFF 0.03 CREF 0.02 direct_test_no 0.02 MI(class) 0.03
CREF 0.03 HDIF 0.02 assertion_no 0.02 CREF 0.02
XMET 0.03 MI(class) 0.02 assertion-McCabe 0.02 CBO(class) 0.02
NAND 0.03 is_public 0.01 NOCL 0.02 MINC(class) 0.02
VREF 0.03 is_nested 0.01 CREF 0.02 HIER(class) 0.02
NOA 0.03 method_length 0.01 NOA 0.02 F-IN(class) 0.02
NEXP 0.03 nested_depth 0.01 MINC(class) 0.02 MOD(class) 0.02
method_length 0.02 assertion_no 0.01 method_length 0.01 is_public 0.01
NOCL 0.02 getter_percent 0.01 nested_depth 0.01 is_static 0.01

Note: Column “imp." denotes “feature importance" mentioned in 4.3.4. Column “all” means that
the results are based on the overall database (among all projects). Column “dir.” means that the
results are based on the methods with direct tests (among all projects). Column “non-dir.” means
that the results are based on the methods with no direct tests (among all projects)

2. existing: Random Forest model based on existing code metrics

3. code observability: Random Forest model based on code observability met-
rics

4. combined: Random Forest model based on the combination of existing metrics
and code observability metrics.

The comparison of the four models is shown in Table 4.9. To make clear which model
performs better than the others, we highlighted the values of the model achieving the
best performance among the four in bold, that of second best in underline. For preci-

4.4. RQ4.1 - RQ4.3 TESTABILITY VERSUS OBSERVABILITY VERSUS COMBINATION

4

107

sion, recall, and AUC, the model with the best performance is the one with the highest
value, while for the mean absolute error, the best scoring model exhibits the lowest value.
For the ZeroR model, because this model classifies all the instances to the majority (i.e.,
one class), the precision of the minority is not valid due to 0/0. Thus, in Table 4.9, we
mark the precisions by “-".

From Table 4.9, we can see that the Random Forest models are better than the base-
line ZeroR which only relies on the majority. This is the prerequisite for further compar-
ison. Combined achieves the best performance (in 5 out of 6 projects) compared to the
existing code metrics and code observability metrics in terms of AUC; this observation is
as expected since combined considered both the existing and our metrics during train-
ing, which provides the classification model with more information. The only excep-
tion is java-apns-apns-0.2.3 (pid = 4). We conjecture that the number of instances
(selected methods) in this project might be too small (only 150 methods) to develop a
sound prediction model. In second place comes the model based on code observability
metrics, edging out the model based on existing metrics.

For the overall dataset (the 7th row marked with “all” in Table 4.9), combined takes
the first place in all evaluation metrics. In second place comes the code observability,
slightly better than existing. Another angle which is interesting to investigate further
is the test directness. If we only consider the methods that are directly tested (the second
to last row in Table 4.9), combined again comes in first, followed by the existing code
metrics model. The same observation holds for the methods that are not directly tested
(the last row in Table 4.9). It is easy to understand that when the dataset only considers
methods that are directly tested (or not), the test directness features in our model be-
come irrelevant. However, we can see that the difference between existing metrics and
ours are quite tiny (<3.4%).

Feature importance analysis Tables 4.10 and 4.11 show the top 15 features per project
(and overall) in descending order. We can see that for five out of the six projects (includ-
ing the overall dataset), test_distance ranks first. This again supports our previous
findings that test directness plays a significant role in mutation testing. The remaining
features in the top 14 vary per projects; this is not surprising, as the task and context
of these projects vary greatly. For example, Apache Commons Lang (Column “2” in Ta-
ble 4.10) is a utility library that provides a host of helper methods for the java.lang
API. Therefore, most methods in Apache Commons Lang are public and static; thus,
is_public and is_static are not among the top 15 features for Apache Commons Lang.
A totally different context is provided by the JFreeChart project (Column “5” in Ta-
ble 4.10). JFreeChart is a Java chart library, whose class encapsulation and inheritance
hierarchy are well-designed, so is_public appears among the top 15 features.

Looking at the overall dataset (Column “all” in Table 4.11), there are eight metrics
from our proposed code observability metrics among the top 15 features. The impor-
tance of test_distance is much higher than the other features (>4.83X). In second
place comes PACK(class), or the number of packages imported. This observation is
easy to understand since PACK(class) denotes the complexity of dependency, and de-
pendency could influence the difficulty of testing, especially when making use of mock-
ing objects. Thereby, dependency affects the mutation score. Clearly, more investiga-

4

108 4. AN EXPLORATORY STUDY ON THE IMPACT OF CODE OBSERVABILITY ON MT

Table 4.12: Spearman results of test directness vs. assertions in terms of r ho

rho assertion_no assertion-McCabe assertion_distance

direct_test_no 0.9604 0.9472 0.9334
test_distance -0.8707 -0.8707 -0.8707

Note: “rho” represents the pairwise correlation coefficient between
each metric in test directness category and that in assertion category
(as shown in Table 4.5).

tions are required to draw further conclusions. The third place in the feature importance
analysis is taken by NOCL, which stands for the Number of Comments. This observation
is quite interesting since NOCL is related to how hard it is to understand the code (code
readability). This implies that code readability might have an impact on mutation test-
ing.

As for the methods with direct tests (Column “dir.” in Table 4.11), is_void takes the
first position, which indicates that it is more difficult to achieve a high mutation score
for void methods. Considering the methods without direct tests (Column “non-dir.” in
Table 4.11), test_distance again ranks first.

Another observation stems from the comparison of the performance of assertion re-
lated metrics in the feature importance analysis and the Spearman rank order correla-
tion results (in Section 4.4.1). For Spearman’s rank order correlation, we can see that
assertion related metrics are the second significant category right after test directness
(in Table 4.8 in Section 4.4.1). While in the feature importance analysis, assertion re-
lated metrics mostly rank after the top 5 (shown in Table 4.10 and Table 4.11). To fur-
ther investigate the reason behind the dramatic changes of ranks for assertion related
metrics, we analyse the correlations between test directness (i.e., direct_test_no and
test_distance) and assertion related metrics (i.e., assertion_no, assertion-McCabe
and assertion_distance). Looking at the correlation results between test directness
and assertion related metrics in Table 4.12, the major reason is that test directness and
assertion related metrics are almost collinear in the prediction model (where |r ho| >
0.87). To put simply, there are almost no tests without assertions for the six subjects. If
the method has a direct test, then the corresponding assertion no. is always greater than
1. Therefore, the ranks of assertion related metrics are not as high as we had initially
expected in the feature importance analysis.

Moreover, we would like to put our observations into perspective by comparing our
results with the work of Zhang et al. [378], where they have constructed a similar Ran-
dom Forest model to predict killable mutant result based on a series of features related
to mutants and tests. The metrics that are common to their model and ours are Cy-
clomatic Complexity (COMP), Depth of Inheritance Tree (DIT), nested_depth, Num-
ber of Subclasses (NSUB), and method_length. Only two metrics in their study, i.e.,
method_length (in 6th place) and nested_depth (in 10th place) appear in our top 15
(Column “all” in Table 4.11). Especially COMP which ranks nine in their results is not in
our top 15. There are multiple reasons for the difference in results: (i) we do consider
a much larger range of metrics, which provide a better explanatory power (statistically
speaking) than the one in their paper; (ii) our goal is to determine patterns in production
and test code that may prevent killing some mutants while Zhang et al. [378] predict if

4.5. RQ4.4 CODE REFACTORING

4

109

Table 4.13: Selected features by PCA

is_public (cond) assertion-density XMET
is_static (cond(cond)) COMP LMET
is_void (cond(loop)) NOCL NLOC
is_nested (loop) NOS VDEC
method_length (loop(cond)) HLTH TDN
nested_depth (loop(loop)) HVOC NAND
direct_test_no non-void_percent HEFF LOOP
test_distance getter_percent HBUG MOD
assertion_no assertion-McCabe CREF NOPR

a mutant is killable (aka different prediction target and different granularity level). Be-
sides, as we see later (next section), we can use our model to determine common anti-
patterns with proper statistical methods. (iii) the subjects used in our experiment are
different from theirs. For example, in project java-apns-apns-0.2.3 (Column “4” in
Table 4.11), COMP appears among the top 15.

Summary Overall, Random Forest based on the combination of existing code metrics
and code observability metrics perform best, followed by that on code observability met-
rics. The analysis of feature importances shows that test directness ranks highest, remark-
ably higher than the other metrics.

4.5. RQ4.4 CODE REFACTORING
Our goal is to investigate whether we can refactor away the observability issue that we
expect to hinder tests from killing mutants and thus to affect the mutation score. In an
in-depth case study, we manually analyse 16 code fragments to understand better the
interaction between testability/observability metrics that we have been investigating,
and the possibilities for refactoring.

Our analysis starts from the combined model, which as Table 4.9 shows, takes the
leading position among the models. We then apply Principal Component Analysis (PCA) [366]
to perform feature selection, which, as Table 4.13 shows, leaves us with 36 features (or
metrics). Then, as discussed in Section 4.3, we build a decision tree based on those 36
metrics using J48 (shown in Figure 4.4), and select the top 6 leaves (also called end nodes)
in the decision tree for further manual analysis as potential refactoring guidelines. We
present the top six anti-patterns in Table 4.14.

Here, we take a partial decision tree to demonstrate how we generate rules (shown
in Figure 4.5). In Figure 4.5, we can see that there are three attributes (marked as an el-
lipse) and four end nodes or leaves (marked as a rectangle) in the decision tree. Since
we would like to investigate how code refactoring increases mutation score (RQ4.4), we
only consider the end nodes labeled with “LOW" denoting mutation score<0.5. By com-
bining the conditions along the paths of the decision tree, we obtain the two rules for
“LOW" end nodes (as shown in the first column of the table in Figure 4.5). For every
end node, there are two values attached to the class: the first is the number of instances
that correctly fall into the node, the other is the instances that incorrectly fall into the
node. The accuracy in the table is computed by the number of correct instances divided
by that of total instances. As mentioned earlier, we select the top 6 end nodes from the

4

110 4. AN EXPLORATORY STUDY ON THE IMPACT OF CODE OBSERVABILITY ON MT

Figure 4.4: Overview of J48 decision tree

4.5. RQ4.4 CODE REFACTORING

4

111

Table 4.14: Top six anti-patterns from J48 decision tree 4.4

Rule No. Details

1 test_distance > 5 && (loop(loop)) ∑ 0 && is_nested = 0 && is_public = 0 &&
XMET > 4 && (loop) ∑ 0 && NOCL ∑ 9 && non-void_percent ∑ 0.42

2 test_distance > 5 && (loop(loop)) ∑ 0 && is_nested = 0 && is_public = 0 &&
XMET > 4 && (loop) ∑ 0 && NOCL > 9

3 test_distance > 5 && (loop(loop)) ∑ 0 && is_nested = 0 && is_public = 1 &&
NOCL ∑ 4 && NOCL > 0 && is_static = 0 && getter_percent ∑ 0.01 && HBUG ∑
0.02 && method_length > 3

4 test_distance > 5 && (loop(loop)) ∑ 0 && is_nested = 0 && is_public = 1 &&
NOCL > 4 && (cond) ∑ 0 && is_static = 0 && LMET ∑ 1 && NOCL > 8 && NOPR > 5
&& is_void = 1

5 test_distance ∑ 5 && is_void = 1 && nested_depth ∑ 0 && NOS ∑ 2 &&
assertion-density ∑ 0.14 && MOD > 1

6 test_distance ∑ 5 && is_void = 1 && nested_depth ∑ 0 && NOS > 2 &&
assertion-density ∑ 0.22 && CREF > 1 && XMET > 0

HBUG

QRQ-YRLd_SHUcHQW

HIGH (67/21)

HIGH (25/10) LOW (27/6)

JHWWHU_SHUcHQW

LOW (41/9)

<= 0.04 > 0.04

<= 0.61 > 0.61

<= 0.07 > 0.07

...

RXOe CRUUecW
iQVWaQce

IQcRUUecW
iQVWaQce AccXUac\

HBUG > 0.04 41 9 0.82

HBUG <=0.04
&& QRQ-YRLd_SHUcHQW > 0.61
&& JHWWHU_SHUcHQW > 0.07

27 6 0.818

Figure 4.5: Demo of rule generation

decision tree, where the end nodes are ranked by the number of correct instances under
the condition accuracy∏0.8.

After selecting the rules, the first author of this chapter has conducted the main task
of the manual analysis. If there were any questions during the manual analysis, the at-
tempts of refactoring or adding tests are discussed among all the authors to reach an
agreement. In our actual case study, we manually analyse 16 cases in total. Due to
space limitations, we only highlight six cases in this chapter (all details are available on
GitHub [390]). We will discuss our findings in code refactoring case by case.

4

112 4. AN EXPLORATORY STUDY ON THE IMPACT OF CODE OBSERVABILITY ON MT

Table 4.15: Summary of mutants from Listing 4.4 (Case 1)

ID Line No. Mutator Results

1 1146 removed call to java/awt/Graphics2D::setFont SURVIVED
2 1147 removed call to java/awt/Graphics2D::setPaint SURVIVED
3 1149 negated conditional SURVIVED
4 1151 negated conditional SURVIVED
5 1157 Replaced float addition with subtraction SURVIVED

1139 /**
1140 * Draws the value label just below the center of the dial.
1141 *
1142 * @param g2 the graphics device .
1143 * @param area the plot area.
1144 */
1145 protected void drawValueLabel (Graphics2D g2 , Rectangle2D area) {
1146 g2. setFont (this. valueFont);
1147 g2. setPaint (this. valuePaint);
1148 String valueStr = "No value ";
1149 if (this. dataset != null) {
1150 Number n = this. dataset . getValue ();
1151 if (n != null) {
1152 valueStr = this. tickLabelFormat . format (n. doubleValue ()) + " "
1153 + this. units ;
1154 }
1155 }
1156 float x = (float) area. getCenterX ();
1157 float y = (float) area. getCenterY () + DEFAULT_CIRCLE_SIZE ;
1158 TextUtils . drawAlignedString (valueStr , g2 , x, y, TextAnchor . TOP_CENTER);
1159 }

Listing 4.4: plot.MeterPlot::drawValueLabel (Case 1)

4.5.1. CASE 1: plot.MeterPlot::drawValueLabel FROM JFreeChart
This case (shown in Listing 4.4) is under anti-pattern Rule 1: test_distance > 5 &&
(loop(loop)) ∑ 0 && is_nested = 0 && is_public = 0 && XMET > 4 && (loop)
∑ 0 && NOCL ∑ 9 && non-void_percent ∑ 0.42. In total, there are 5 mutants gen-
erated from this method (shown in Table 4.15). All 5 mutants survive the test suite.

Code changes We start with test_distance > 5 which means there is no direct test
for this method. Accordingly, we add one direct test (shown in Listing 4.5).

However, Mutant 4 and 5 cannot be killed by adding the above direct test. Upon in-
spection, we found that Mutant 4 and 5 cannot be killed because the DrawValueLabel(...)
method is void. In particular, this means that the changes in the state caused by the
TextUtils.drawAlignedString() method (line 1158) cannot be assessed. This is in-
dicated by non-void_percent ∑ 0.42 in Rule 1. We then refactor the method to have
it return Rectangle2D (shown in Listing 4.6). Also, we improve the direct test for this
method in Listing 4.5 by adding a new test method (shown in Listing 4.7) to avoid the as-
sertion roulette test smell [254, 284]. By refactoring the method to non-void and adding
a direct test, all previously surviving mutants are now successfully killed.

4.5. RQ4.4 CODE REFACTORING

4

113

1 @Test
2 public void testDrawValueLabel (){
3 MeterPlot p1 = new MeterPlot (new DefaultValueDataset (1.23));
4 BufferedImage image = new BufferedImage (3, 4, BufferedImage . TYPE_INT_ARGB)

;
5 Graphics2D g2 = image . createGraphics ();
6 Rectangle2D area = new Rectangle (0, 0, 1, 1);
7 p1. drawValueLabel (g2 ,area);
8 assertTrue (g2. getFont () == p1. getValueFont ());
9 assertTrue (g2. getPaint () == p1. getValuePaint ());

10 }

Listing 4.5: Direct test for Listing 4.4 (Case 1)

1145 protected Rectangle2D drawValueLabel (Graphics2D g2 , Rectangle2D area) {

1146 g2. setFont (this. valueFont);
1147 g2. setPaint (this. valuePaint);
1148 String valueStr = "No value ";
1149 if (this. dataset != null) {
1150 Number n = this. dataset . getValue ();
1151 if (n != null) {
1152 valueStr = this. tickLabelFormat . format (n. doubleValue ()) + " "
1153 + this. units ;
1154 }
1155 }
1156 float x = (float) area. getCenterX ();
1157 float y = (float) area. getCenterY () + DEFAULT_CIRCLE_SIZE ;

1158 return TextUtils.drawAlignedString(valueStr, g2, x, y,TextAnchor.TOP_CENTER);

1159 }

Listing 4.6: Refactoring of Listing 4.4 (Case 1)
Note: we highlight the refactored parts in yellow colour.

Table 4.16: Summary of mutants from Listing 4.8 (Case 2)

ID Line No. Mutator Results

1 165 mutated return of Object value for org/jfree/chart/util/PaintAlpha::darker to (
if (x != null) null else throw new RuntimeException)

NO_COVERAGE

2 166 Replaced double multiplication with division NO_COVERAGE
3 167 Replaced double multiplication with division NO_COVERAGE
4 168 Replaced double multiplication with division NO_COVERAGE

4.5.2. CASE 2: axis.SymbolAxis::drawGridBands FROM JFreeChart
This case (shown in Listing 4.8) is under Rule 2: test_distance > 5 && (loop(loop))
∑ 0 && is_nested = 0 && is_public = 0 && XMET > 4 && (loop) ∑ 0 && NOCL
> 9. In total, 4 mutants are generated from this method (see Table 4.16). None of the
mutants are killed.

Code changes It is clear that this method is private, thus, it is impossible to call this
method from outside the class directly. We first refactor this method from private to
public. This is revealed by is_public = 0 in Rule 2.

Then, guided by test_distance > 5 from Rule 2, we add a direct test for this method
to kill all mutants (see Listing 4.10).

4

114 4. AN EXPLORATORY STUDY ON THE IMPACT OF CODE OBSERVABILITY ON MT

1 @Test

2 public void testDrawValueLabelArea() {
3 MeterPlot p1 = new MeterPlot (new DefaultValueDataset (1.23));
4 BufferedImage image = new BufferedImage (3, 4, BufferedImage . TYPE_INT_ARGB)

;
5 Graphics2D g2 = image . createGraphics ();
6 Rectangle2D area = new Rectangle (0, 0, 1, 1);

7 Rectangle2D drawArea = p1.drawValueLabel(g2,area);

8 assertEquals(0.5,drawArea.getCenterX(),0.01);

9 assertEquals(18.8671875,drawArea.getCenterY(),0.01);

10 assertEquals(15.0,drawArea.getHeight(),0.01);

11 assertEquals(64.0,drawArea.getWidth(),0.01);

12 }

Listing 4.7: Improved direct test for Listing 4.4 (Case 1)
Note: we highlight the improved parts in yellow colour.

154 /**
155 * Similar to { @link Color # darker () }.
156 * <p>
157 * The essential difference is that this method
158 * maintains the alpha - channel unchanged

159 *
160 * @param paint a { @code Color }
161 *
162 * @return a darker version of the { @code Color }
163 */
164 private static Color darker (Color paint) {
165 return new Color (
166 (int)(paint . getRed () * FACTOR),
167 (int)(paint . getGreen () * FACTOR),
168 (int)(paint . getBlue () * FACTOR), paint . getAlpha ());
169 }

Listing 4.8: axis.SymbolAxis::drawGridBands (Case 2)

4.5.3. CASE 3: builder.IDKey::hashCode FROM Apache Commons Lang
This case (shown in Listing 4.11) is under Rule 3: test_distance > 5 && (loop(loop))
∑ 0 && is_nested = 0 && is_public = 1 && NOCL ∑ 4 && NOCL > 0 && is_static
= 0 && getter_percent ∑ 0.01 && HBUG ∑ 0.02 && method_length > 3. Only
one mutant is generated for this method: a mutant that replaces the return value with (x
== 0 ? 1 : 0). This mutant survives.

Code changes Starting with test_distance > 5, we add a direct test for this method
(shown in Listing 4.12), which works perfectly to kill the mutant.

4.5.4. CASE 4: AbstractCategoryItemRenderer::drawOutline FROM

JFreeChart
This case (shown in Listing 4.13) is under Rule 4: test_distance > 5 && (loop(loop))
∑ 0 && is_nested = 0 && is_public = 1 && NOCL > 4 && (cond) ∑ 0 && is_static

4.5. RQ4.4 CODE REFACTORING

4

115

164 public static Color darker (Color paint) {

165 return new Color (
166 (int)(paint . getRed () * FACTOR),
167 (int)(paint . getGreen () * FACTOR),
168 (int)(paint . getBlue () * FACTOR), paint . getAlpha ());
169 }

Listing 4.9: Refactoring of Listing 4.8 (Case 2)
Note: we highlight the refactored parts in yellow colour.

1 @Test
2 public void testDarker (){
3 Color paint = new Color (10 ,20 ,30);
4 Color darker = PaintAlpha . darker (paint);
5 assertEquals (7, darker . getRed ());
6 assertEquals (14 , darker . getGreen ());
7 assertEquals (21 , darker . getBlue ());
8 }

Listing 4.10: Direct test for Listing 4.8 (Case 2)

= 0 && LMET ∑ 1 && NOCL > 8 && NOPR > 5 && is_void = 1. Also in this case,
only 1 mutant is generated for this method. The particular change applied is the re-
moval of the call to AbstractCategoryPlot::drawOutline. The original test suite did
not kill the mutant.

Code changes Based on test_distance > 5, we add one direct test (as shown in List-
ing 4.14) for this method to kill the surviving mutant.

4.5.5. CASE 5: builder.ToStringStyle::setUseShortClassName FROM

Apache Commons Lang
This case (shown in Listing 4.15) is under Rule 5: test_distance ∑ 5 && is_void =
1 && nested_depth ∑ 0 && NOS ∑ 2 && assertion-density ∑ 0.14 && MOD >
1. In this case, a single (surviving) mutant is generated that removes the call to builder.
ToStringStyle::setUseShortClassName.

Code changes We can see that Rule 5 is different from the previous rule in that test_distance
is less than 5, while in Rule 4 test_distance > 5. A more in-depth analysis reveals that

46 /**
47 * returns hash code - i.e., the system identity hashcode .
48 * @return the hashcode
49 */
50 @Override
51 public int hashCode () {
52 return id;
53 }

Listing 4.11: builder.IDKey::hashCode (Case 3)

4

116 4. AN EXPLORATORY STUDY ON THE IMPACT OF CODE OBSERVABILITY ON MT

1 @Test
2 public void testHashCode (){
3 IDKey idKey = new IDKey (new Integer (123));
4 assertEquals (989794870 , idKey . hashCode ());
5 }

Listing 4.12: Direct test for Listing 4.11 (Case 3)

808 /**
809 * Draws an outline for the data area. The default implementation just
810 * gets the plot to draw the outline , but some renderers will override this
811 * behaviour .
812 *
813 * @param g2 the graphics device .
814 * @param plot the plot.
815 * @param dataArea the data area.
816 */
817 @Override
818 public void drawOutline (Graphics2D g2 , CategoryPlot plot ,
819 Rectangle2D dataArea) {
820 plot. drawOutline (g2 , dataArea);
821 }

Listing 4.13: AbstractCategoryItemRenderer::drawOutline (Case 4)

the method in Listing 4.15 is already directly invoked by the original test suite. The sur-
viving mutant is due to the fact that there are no assertions that examine the changes af-
ter the setUseShortClassName method call. This situation is reflected by assertion-density
∑ 0.14 in Rule 5. Therefore, we add assertions to assess the changes (seen in List-
ing 4.16), which leads to the mutant being killed.

4.5.6. CASE 6: exception.TooManyEvaluationsException::<init>

FROM Apache Commons Math
This case (shown in Listing 4.17) is under Rule 6: test_distance ∑ 5 && is_void =
1 && nested_depth ∑ 0 && NOS > 2 && assertion-density ∑ 0.22 && CREF >
1 && XMET > 0 && VDEC ∑ 0 && NOCL ∑ 12. A single mutant is generated: a re-
moval of the call to exception.util.ExceptionContext::addMessage. This mutant
is surviving the test suite.

1 @Test
2 public void testDrawOutline (){
3 AbstractCategoryItemRenderer r = new LineAndShapeRenderer ();
4 BufferedImage image = new BufferedImage (200 , 100 ,
5 BufferedImage . TYPE_INT_RGB);
6 Graphics2D g2 = image . createGraphics ();
7 CategoryPlot plot = new CategoryPlot ();
8 Rectangle2D dataArea = new Rectangle2D . Double ();
9 r. drawOutline (g2 ,plot , dataArea);

10 assertTrue (g2. getStroke () == plot. getOutlineStroke ());
11 }

Listing 4.14: Direct test for Listing 4.13 (Case 4)

4.5. RQ4.4 CODE REFACTORING

4

117

81 /**
82 * <p>Sets whether to output short or long class names .</p>
83 *
84 * @param useShortClassName the new useShortClassName flag
85 * @since 2.0
86 */
87 @Override
88 public void setUseShortClassName (final boolean useShortClassName) { // NOPMD

as this is implementing the abstract class
89 super . setUseShortClassName (useShortClassName);
90 }

Listing 4.15: builder.ToStringStyle::setUseShortClassName (Case 5)

1 @Test
2 public void testSetUseShortClassName (){
3 assertTrue (STYLE . isUseShortClassName ());
4 STYLE . setUseShortClassName (false);
5 assertFalse (STYLE . isUseShortClassName ());
6 STYLE . setUseShortClassName (true);
7 assertTrue (STYLE . isUseShortClassName ());
8 }

Listing 4.16: Additional assertions for Listing 4.15 (Case 5)

Code changes We found that the mutant in Line 37 cannot be killed because the func-
tion addMessage changes the field List<Localizable> msgPatterns. This field is
private in the class ExceptionContext and there is no other way to access it. As such,
our first step is to add a getter for msgPatterns (shown in Listing 4.18). In Rule 6, we
can see that is_void = 1 is the underlying cause since void methods could be difficult
to test if no getters for private fields exist.

To kill the surviving mutant, we add one extra assertion (in a new test method) to ex-
amine the changes in msgPatterns (in Listing 4.19). This action is also partly evidenced
by assertion-density ∑ 0.22 in Rule 6. As assertion-density denotes the ratio be-
tween the total number of assertions in direct tests and the lines of code in direct tests,
low assertion-density is a sign of insufficient assertions in the direct tests to detect the
mutant.

30 /**
31 * Construct the exception .
32 *
33 * @param max Maximum number of evaluations .
34 */
35 public TooManyEvaluationsException (Number max) {
36 super (max);
37 getContext (). addMessage (LocalizedFormats . EVALUATIONS);
38 }

Listing 4.17: exception.TooManyEvaluationsException::<init> (Case 6)

4

118 4. AN EXPLORATORY STUDY ON THE IMPACT OF CODE OBSERVABILITY ON MT

1 public List < Localizable > getMsgPatterns (){
2 return msgPatterns ;
3 }

Listing 4.18: Refactoring of Listing 4.17 (Case 6)

1 @Test

2 public void testMsgPatterns() {

3 final int max = 12345;
4 final TooManyEvaluationsException e = new TooManyEvaluationsException (max)

;
5 final String msg = e. getLocalizedMessage ();

6 Assert.assertTrue(e.getContext().getMsgPatterns()

7 .contains(LocalizedFormats.EVALUATIONS));
8 }

Listing 4.19: Additional assertion for Listing 4.17 (Case 6)
Note: we highlight the added parts in yellow colour.

4.5.7. RQ4.4 SUMMARY
Based on all 16 cases that we analysed (available in our GitHub repository [390]), we
found that our code observability metrics can lead to simple refactorings that enable to
kill mutants that were previously not being killed. Ultimately, this leads to an increase of
the mutation score:

• most cases can be easily fixed by adding direct tests if test_distance>5.

• most cases can be easily fixed by adding assertions if test_distance∑5.

• private methods must be refactored to protected/public for testing (indicated by
is_public=0).

• three void methods had to be refactored to be non-void (indicated by is_void=1
and non-void_percent∑0.42).

• one void method needed an additional getter because a private field was changed
(indicated by is_void=1).

4.5.8. DISCUSSION
From the findings of RQ4.4, we can see that some code refactorings break OO design
principles [81]. For instance, we suggest to change the access modifier from private to
protected/public to kill the mutants; this violates the idea of Encapsulation, the ability
to protect some components of the object from external entities [81]. This observation
brings us to a discussion about the dilemma between OO design principles and test-
ing and hence software testability [335]. The main concepts of OO design are centred
around the features of Data abstraction, Encapsulation, Inheritance, Polymorphism, and
Dynamic binding. However, some factors such as Encapsulation and Inheritance could

4.6. THREATS TO VALIDITY

4

119

increase the complexity of OO systems and hence hinder testing and testability [335]. Ex-
isting literature [257, 263, 323, 385] has already addressed this dilemma. Mouchawrab et
al. [257] pointed out that increasing the size of the inheritance hierarchy could increase
the cost of testing due to dynamic dependencies. Singh and Saha’s work [323] has shown
that Inheritance and Polymorphism increase testing effort and lower software testabil-
ity. All the works above indicate that there is a trade-off between OO design features and
software testability. Currently, it is up to practitioners to balance the two perspectives
themselves depending on the requirements of software and their preferences.

In the context of mutation testing, a similar trade-off between OO design features
and the ease of killing mutants exists. In this study, we relate the ease of killing mutants
to the testability and observability. In Section 4.5.7, we found that a simple strategy to
kill all the mutants is to write additional direct tests and/or assertions. However, some
OO design features related to Encapsulation, such as the private access modifier (see
Listing 4.8), increase the difficulty to add a direct test. Also, the void return type pre-
vents killing the mutants generated from the immediate states that cannot propagate to
the output (see Listing 4.4). As such, a very important note here is that our refactoring
recommendations listed in Section 4.5.7 are centred around the anti-patterns based on
the testability and observability; they do not take OO design principles into considera-
tion. The recommendations attempt to help developers in understanding the cause of
the low mutation score considering testability and observability, but not all surviving
mutants are due to test quality.

Take Listing 4.8 for instance. The developer found the mutation score of this method
is low, and our tool shows the low mutation score is mainly due to private access control
modifier. Then, the developer can decide to ignore the surviving mutants if he cannot
break Encapsulation based on the requirement. Or if this method is critical and must
be well-tested according to the document, he may alter the access control modifier from
private to protected/public to kill the mutants. Whether the developers make use of these
testability and observability recommendations depends on their choices with regard to
either (1) adding test cases [71–73] (2) refactoring the production code to kill the mu-
tants, or (3) ignoring the surviving mutants.

4.6. THREATS TO VALIDITY

External validity Our results are based on mutants generated by the operators imple-
mented in PIT. While PIT is a frequently used mutation testing tool, our results might be
different when using other mutation tools [220]. Concerning the subject systems selec-
tion, we choose six open-source projects from GitHub; the selected projects differ in size,
the number of test cases and application domain. Besides, as mentioned in Section 4.3,
the large number of the methods with low mutant number is an unavoidable bias in our
experiment. The reason is partly due to the optimisation mechanism of PIT [101] and
partly due to a large number of short methods in those projects. Nevertheless, we do
acknowledge that a broad replication of our study would mitigate any generalisability
concerns even further.

4

120 4. AN EXPLORATORY STUDY ON THE IMPACT OF CODE OBSERVABILITY ON MT

Internal validity The main threat to internal validity for our study is the implementa-
tion of the MUTATION OBSERVER tool for the experiment. To reduce internal threats to
a large extent, we rely on existing tools that have been widely used, e.g., WEKA, MATLAB,
and PIT. Moreover, we carefully reviewed and tested all code for our study to eliminate
potential faults in our implementation. Another threat to internal validity is the disre-
gard of equivalent mutants in our experiment. However, this threat is unavoidable and
shared by other studies on mutation testing that attempt to detect equivalent mutants
or not [165, 252]. Moreover, we consider equivalent mutants as a potential weakness in
the software (reported by Coles [100, slide 44-52]); thereby, we did not manually detect
equivalent mutants in this chapter.

Construct validity The main threat to construct validity is the measurement we used
to evaluate our methods. We minimise this risk by adopting evaluation metrics that are
widely used in research (such as recall, precision, and AUC), as well as a sound statistical
analysis to assess the significance (Spearman’s rank-order correlation).

4.7. RELATED WORK
The notion of software testability dates back to 1991 when Freedman [151] formally de-
fined observability and controllability in the domain of software. Voas [354] proposed
a dynamic technique coined propagation, infection, and execution (PIE) analysis for
statistically estimating the program’s fault sensitivity. More recently, researchers have
aimed to increase our collective understanding of testability by using statistical meth-
ods to predict testability based on various code metrics. A prime example is the work of
Bruntink and van Deursen [89], who have explored the relationship between nine class-
level object-oriented metrics and testability. To the best of our knowledge, no study uses
statistical or machine learning methods to investigate the relationship between testabil-
ity/observability metrics and the mutation score.

Mutation testing was initially introduced as a fault-based testing method which was
regarded as significantly better at detecting errors than the covering measure approach [92].
Since then, mutation testing has been actively investigated and studied, thereby result-
ing in remarkable advances in its concepts, theory, technology, and empirical evidence.
For more literature on mutation testing, we refer to the existing surveys of DeMillo [115],
Offutt and Untch [277], Jia and Harman [197], Offutt [279] and our literature review
(Chapter 2). Here we mainly address the studies that concern mutant utility [203], the
efficacy of mutation testing. Yao et al. [373] have reported on the causes and prevalence
of equivalent mutants and their relationship to stubborn mutants based on a manual
analysis of 1230 mutants. Visser [351] has conducted an exhaustive analysis of all pos-
sible test inputs to determine how hard it is to kill a mutant considering three common
mutation operators (i.e., relational, integer constants and arithmetic operators). His re-
sults show that mutant reachability, mutation operators and oracle sensitivity are the key
contributions to determining how hard it is to kill a mutant. Just et al. [203] have shown
a strong correlation between mutant utility and context information from the program
in which the mutant is embedded. Brown et al. [88] have developed a method for creat-
ing potential faults that are more closely coupled with changes made by actual program-

4.8. CONCLUSION & FUTURE WORK

4

121

mers where they named “wild-caught mutants". Chekam et al. [96] have investigated the
problem of selecting the fault revealing mutants. They put forward a machine learning
approach (decision trees) that learns to select fault revealing mutants from a set of static
program features. Jimenez et al. [198] investigated the use of natural language modeling
techniques in mutation testing. All studies above have enriched the understanding of
mutation testing, especially its efficacy. However, the aim of our work is different from
those studies, as we would like to gain insights into how code quality in terms of testa-
bility and observability affects the efforts needed for mutation testing, especially in how
to engineer tests to kill more the mutants.

Similar to our study, there have been a few recent studies also investigating the re-
lationships between assertions and test directness with mutation testing. Schuler and
Zeller [315] introduced checked coverage—the ratio of statements that contribute to the
computation of values that are later checked by the test suite— as an indicator for or-
acle quality. In their experiment, they compared checked coverage with the mutation
score, where they found that checked coverage is more sensitive than mutation testing
in evaluating oracle quality. Huo and Clause [187] proposed direct coverage and indirect
coverage by leveraging the concepts of test directness with conventional statement cover-
age. They used the mutants as an indicator of the test suite effectiveness, and they found
faults in indirectly covered code are significantly less likely to be detected than those in
directly covered code. Zhang and Mesbah [384] evaluated the relationship between test
suite effectiveness (in terms of the mutation score) and the (1) number of assertions, (2)
assertion coverage, and (3) different types of assertions. They found test assertion quan-
tity and assertion coverage are strongly correlated with the mutation score, and assertion
types could also influence test suite effectiveness. Compared to our studies, those works
only addressed one or two aspect(s) of code observability in our study. We provide a
complete view of the relationships between code observability and mutation testing.

The study most related to ours is that of Zhang et al. [378]’s predictive mutation test-
ing, where they have constructed a classification model to predict killable mutant re-
sult based on a series of features related to mutants and tests. In their discussion, they
compared source code related features and test code related features in the prediction
model for the mutation score. They found that test code features are more important
than source code ones. But from their results, we cannot draw clear conclusions on the
impact of production code on mutation testing as their goal is to predict exact killable
mutant results. Another interesting work close to our study is Vera-Pérez et al. [347]’s
pseudo-tested methods. Pseudo-tested methods denote those methods that are covered
by the test suite, but for which no test case fails even if the entire method body is com-
pletely stripped. They rely on the idea of “extreme mutation”, which completely strips
out the body of a method. The difference between Vera-Pérez et al. [347]’s study and
ours is that we pay attention to conventional mutation operators rather than “extreme
mutation”.

4.8. CONCLUSION & FUTURE WORK
This chapter aims to bring a new perspective to software developers helping them to
understand and reason about the mutation score in the light of testability and observ-
ability. This should enable developers to make decisions on the possible actions to take

4

122 4. AN EXPLORATORY STUDY ON THE IMPACT OF CODE OBSERVABILITY ON MT

when confronted with low mutation scores. To achieve this goal, we firstly investigate
the relationship between testability and observability metrics and the mutation score.
More specifically, we have collected 64 existing source code quality metrics for testabil-
ity, and have proposed a set of metrics that specifically target observability. The results
from our empirical study involving 6 open-source projects show that the 64 existing code
quality metrics are not strongly correlated with the mutation score (|r ho| < 0.27). In con-
trast, the 19 newly proposed code observability metrics, that are defined in terms of both
production code and test cases, do show a stronger correlation with the mutation score
(|r ho| < 0.5). In particular, test directness, test_distance, and direct_test_no stand
out.

To better understand the causality of our insights, we continue our investigation with
a manual analysis of 16 methods that scored particularly bad in terms of mutation score,
i.e., a number of mutants were not killed by the existing tests. In particular, we have
refactored these methods and/or added tests according to the anti-patterns that we es-
tablished in terms of the code observability metrics. Our aim here is to establish whether
the removal of the observability anti-patterns would lead to an increase in the muta-
tion score. We found that these anti-patterns can indeed provide insights in order to kill
the mutants by indicating whether the production code or the test suite needs improve-
ments. For instance, we found that private methods (expressed as is_public=0 in our
schema) are prime candidates to potentially refactor to increase their observability, e.g.,
by making them public or protected for testing purpose.

However, some refactoring recommendations could violate OO design principles.
For example, by changing private to protected/public we increase observability, but we
also break the idea of encapsulation. Therefore, we suggest developers make a choice
between—(1) adding test cases, (2) refactoring the production code to kill the mutants,
or (3) ignoring the surviving mutants—by considering the trade-off between OO design
features and testability/observability.

To sum up, our chapter makes the following contributions:

1. 19 newly proposed code observability metrics

2. a detailed investigation of the relationship between testability/observability met-
rics and the mutation score (RQ4.1-RQ4.3)

3. a case study with 16 code fragments to investigate whether removal of the anti-
patterns increases the mutation score (RQ4.4)

4. a guideline for developers to make choices when confronting low mutation scores

5. a prototype tool coined MUTATION OBSERVER (openly available on GitHub [390])
that automatically calculates code observability metrics

Future work With our tool, and since the results are encouraging, we envision the fol-
lowing future work: 1) conduct additional empirical studies on more subject systems; 2)
evaluate the usability of our code observability metrics by involving practitioners; 3) in-
vestigate the relations between more code metrics (e.g., code readability) and mutation
score.

5
MUTATION TESTING FOR PHYSICAL

COMPUTING

Physical computing, which builds interactive systems between the physical world and
computers, has been widely used in a wide variety of domains and applications, e.g.,
the Internet of Things (IoT). Although physical computing has witnessed enormous re-
alisations, testing these physical computing systems still face many challenges, such as
potential circuit related bugs which are not part of the software problems, the timing is-
sue which decreasing the testability, etc.; therefore, we proposed a mutation testing ap-
proach for physical computing systems to enable engineers to judge the quality of their
tests in a more accurate way. The main focus is the communication between the software
and peripherals. More particular, we first defined a set of mutation operators based on
the common communication errors between the software and peripherals that could hap-
pen in the software. We conducted a preliminary experiment on nine physical computing
projects based on the Raspberry Pi and Arduino platforms. The results show that our mu-
tation testing method can assess the test suite quality effectively in terms of weakness and
inadequacy.

This chapter has been published in the 18th IEEE International Conference on Software Quality, Reliability,
and Security (QRS) [394].

123

5

124 5. MUTATION TESTING FOR PHYSICAL COMPUTING

5.1. INTRODUCTION
Physical computing creates a conversation between the physical world and the virtual
world of the computer [282]. The recent confluence of embedded and real-time systems
with wireless, sensor, and networking technologies is creating a nascent infrastructure
for an educational, technical, economic, and social revolution. Fuelled by the recent
adoption of a variety of enabling wireless technologies such as RFID tags, embedded
sensor and actuator nodes, the Internet of Things (IoT) has stepped out of its infancy and
is rapidly advancing in terms of technology, functionality, and size, with more real-time
applications [166]. A good example of the IoT is wearable devices like fitness trackers
that are ever getting more popular.

Modern embedded platforms, like those centred around the 8051 and Freescale micro-
controller series, have seen a dramatic rise in speed and functionality. The Raspberry Pi
and Arduino platforms, which were originally meant for education, are two of the most
popular modern embedded platforms. They are both open-source electronics platforms
based on easy-to-use hardware and software.

An equally important trend is softwarization of hardware. In the early days, hard-
ware engineers had to build circuits by physically connecting electronic components
using wire and soldering. More recently, reconfigurable computing tools provide the op-
portunity to compile programs written in high-level languages such as C and Java into a
hardware architecture. A Raspberry Pi supports several programming languages includ-
ing Python to control the General Purpose Input/output (GPIO) pins to communicate
with the external devices. This means that developing a physical computing system has
been simplified to the point where the hardware peripherals can easily be controlled
via software without even knowing the hardware part. This trend also provides a great
opportunity for applying methodologies of software engineering in physical computing,
especially testing techniques.

As physical computing is maturing, testing these sensor-based applications, espe-
cially the processing programs, becomes essential. Essential, because compared to con-
ventional software projects, the costs associated with failing physical computing systems
are often even bigger, as bugs can result in real-life accidents. For example, a robotic
arm might accidentally hurt the human if the programmer does not set up the initial
state properly. Therefore, to develop a rigorous and sound physical computing system, a
high-quality test suite becomes crucial. This brings us to mutation testing, a fault-based
testing technique that assesses the test suite quality by systematically introducing small
artificial faults [197]. It has been shown to perform well in exposing faults [144, 228, 244].

In this chapter, we propose a novel mutation testing approach for physical comput-
ing systems enabling engineers to judge the quality of their tests in an accurate way.
Specifically, we define a set of mutation operators based on common mistakes that we
observed when developing physical computing systems. We present an initial evalua-
tion of our approach on the Raspberry Pi and Arduino platforms.

5.2. BACKGROUND AND MOTIVATION
We introduce basic concepts related to physical computing and mutation testing. We
then motivate why mutation testing should be applied to physical computing systems.

5.2. BACKGROUND AND MOTIVATION

5

125

5.2.1. PHYSICAL COMPUTING
Most physical computing systems (and most computer applications in general) can be
broken down into the following same three stages: input, processing, and output [282].
The input is about how computers sense the physical world via sensors and signals, such
as buttons and speakers. While the output is where computers make changes to the
world under people’s desire through various actuators, like servos, motors and LEDs.
The processing procedure requires a computer (usually an embedded platform) to read
the inputs and turn them into outputs.

The General Purpose Input/output (GPIO) is the primary interface that micro-controllers
including Raspberry Pi use to communicate with external devices. The pins available on
a processor can be programmed to be used to either accept input or provide output to
external devices depending on user desires and application requirements. These pins
support a variety of data handling methods, such as Analog-to-Digital conversion and
interrupt handling. GPIO is also the main focus of our methodology.

Among different embedded system platforms, the Raspberry Pi is a popular one-
chip computer which includes an ARM-compatible CPU, a GPU and a Secure Digital
(SD) card module. Its recommended operating system for normal use is Raspbian, a free,
Debian-based operating system optimised for the platform. Python is the recommended
programming language and the RPi.GPIO library is used to configure GPIO pins.

Another popular micro-controller is Arduino which is also open-source and easy-to-
use. Arduino boards support GPIO pins as well. The Arduino Software (IDE) runs on the
Windows, MacOS, and Linux operating systems. Its programming language can be ex-
panded through C++ libraries, and users wanting to understand the technical details can
make the leap from Arduino to the AVR C programming language on which it is based.
Similarly, users can also add AVR-C code directly into Arduino programs.

5.2.2. MUTATION TESTING
Mutation testing is defined by Jia and Harman [197] as a fault-based testing technique
which provides a testing criterion called the mutation adequacy score. This score can be
used to measure the effectiveness of a test set regarding its ability to detect faults [197].
The principle of mutation testing is to introduce syntactic changes into the original pro-
gram to generate faulty versions (called mutants) according to well-defined rules (mu-
tation operators) [279]. The benefits of mutation testing have been extensively investi-
gated and can be summarised as (mentioned in Chapter 2): 1) having better fault ex-
posing capability compared to other test coverage criteria [144, 228, 244], 2) being an
excellent alternative to real faults and providing a good indication of the fault detection
ability of a test suite [50].

5.2.3. CHARACTERISTICS OF PHYSICAL COMPUTING
Physical computing allows to build interactive physical systems through a combination
of hardware and software. The following six major characteristics describe the unique-
ness of physical computing [329]:

(1) Safety and security issue: physical computing systems are much more safety-
critical than traditional software where small defects could have a tremendous impact
on the reliability of systems upon which people’s lives and living depend. Moreover, sen-

5

126 5. MUTATION TESTING FOR PHYSICAL COMPUTING

sor networks interact closely with their physical environment and with people, posing
additional security problems.

(2) Fault-tolerance: fault-tolerance is a crucial requirement for physical computing
systems that manage to handle exceptions properly once a certain part does not work.
E.g., sensors may fail due to surrounding physical conditions or when their energy runs
out. It may be difficult to replace existing sensors; the network must be fault-tolerant
such that non-catastrophic failures are hidden from the application [339].

(3) Lack of knowledge: physical computing is a multi-dis-ciplinary domain which
requires developers to create high-level software system as well as low-level embedded
systems solutions. However, most embedded systems developers have an electrical engi-
neering background, therefore, might lack basic knowledge of software engineering, es-
pecially testing techniques; which could lead to error-prone code and low-quality tests.

(4) Circuit related bugs: this type of errors is mostly due to hardware configuration,
such as shorts circuits, errors in sensors, undefined states (not pulling up resistors for the
input processing); these bugs could be prevented or localised by testing each component
at the unit level.

(5) Timing issue: in most cases, peripherals are activated or deactivated at a particu-
lar time, e.g., systems embedded with sonic sensors only start working when the distance
meets a specific condition. The timing issue decreases testability of physical computing
systems as it is hard to set up the real scenarios for testing.

(6) Slow execution speed: although there is a dramatic improvement in the power
and functionality of modern embedded platforms, the execution speed of these embed-
ded platforms is still not as comparable as PCs and servers. Thereby, the processing
program must be carefully designed to avoid computationally-consuming algorithms.

Motivation. We can see that physical computing systems require extremely error-
free and reliable code considering the safety and security issue and fault-tolerance. The
slow execution speed of embedded platforms also demands a well-designed and cost-
effective processing program to be deployed ubiquitously. Moreover, the testing proce-
dure is of utmost importance to implement high-quality and error-free programs, as well
as detect circuit related bugs, and make up developers’ lack of knowledge of software en-
gineering. Also, a weak test suite is not sufficient enough to detect the faults and cannot
correctly handle the timing issue.

Taking all the characteristics of physical computing systems together, the primary
challenge for physical computing systems here is: how to effectively and efficiently test
these physical systems? To deal with this challenge, we are seeking to apply software engi-
neering methodologies to the physical computing domain. In particular, mutation test-
ing, which is well-known for its high fault-revealing effectiveness, is a viable way to help
developers design better quality test suites in this highly safety critical domain. Also,
mutation testing, as a fault injection technique, is an ideal method for testing the fault
tolerance mechanisms with respect to a specific set of inputs the physical computing
systems are meant to cope with [58].

5.3. DESIGNING MUTATION OPERATORS
To integrate computing with the physical world via sensors and actuators, an essential
component is an interface between the software (processing programs) and peripher-

5.3. DESIGNING MUTATION OPERATORS

5

127

als (sensors and actuators). The proliferation of sensor and actuator networks in (civil-
ian) applications requires new approaches to handle real-time, multimedia and multi-
threaded communications, such as wireless sensor network [339] and cloud comput-
ing [125]. This leads to a more complex and error-prone integration part. Therefore,
when designing a mutation operator for physical computing, our main goal is to narrow
down the scope of the mutation process to parts of the code that affect the communica-
tion between the software and peripherals (digital circuits1), namely the GPIO interface.
To derive the mutation operators that represents errors typically made by programmers
during the implementation of the software, we first summarise common mistakes that
could happen in the software based on our experience. Subsequently, we design a set of
mutation operators for these common mistakes.

(1) output value errors: The output value is usually decided by a complex function
which takes many elements such as feedback from the sensors and preferences of the
user, into consideration. For example, an automatic watering system decides when to
water the plants according to multiple environmental conditions, e.g., soil humidity and
the amount of water configured by the user. Thus, the output could be wrong if there
exists a bug in the function. More specifically, we only pay attention to the final output
value generated by the function, i.e., whether the output value is high or low, regardless
of the function details. For this type of the error, we derived the OutputValueReplace-
ment (OVR) operator which replaces HIGH to LOW (and vice versa) in the output value.

(2) output setting omissions: Once a certain signal has been received/read by a pe-
ripheral, the output value should, in some cases, be reset to ensure that the peripheral
can change states at a later stage. For example, a self-driving car should reduce engine
output when detecting a wall, but the engine should engage again after clearing the wall.
Accordingly, we designed the OutputSettingRemoval (OSR) operator which deletes the
output setting function.

(3) pin number errors: The programmer may read information or send control sig-
nals using a wrong pin that she does not intend to operate. The problem typically arises
during prototyping for two reasons: 1) the GPIO pins are usually on the PCB as a sym-
metric array without labels so that designers need to locate a pin by counting, and 2)
the order of a pin on the PCB is typically different from its numerical ID in the software
API, making the mapping error-prone. PinNumberReplacement (PNR) replaces the pin
id with one of the surrounding pin ids.

(4) input value errors: There are usually two ways to obtain an input value. The sim-
plest way is to check the input value at a point in time. This “polling" can potentially miss
an input if the program reads the value at the wrong time. The other way of responding
to a GPIO input is using edge detection. An edge is the name of a transition from HIGH
to LOW (falling edge) or LOW to HIGH (rising edge). Quite often, we are more concerned
by a change in state of an input than its value. One potential fault in the edge detection
is to mix up the falling and rising edge. This problem is common due to the confusion
brought by the variety of external devices, e.g., for the 7400 series logic chip, for instance,
the 74LS107 JK flip-flop chip [338] triggers on a rising edge, while the 74HC74 D flip-flop
chip [337] triggers on a falling edge. For input value mistakes, we defined the following

1In this chapter, we focus on the digital circuits, where two possible states, i.e., HIGH and LOW, are considered.
As this is the fundamental circuit type compared to analog.

5

128 5. MUTATION TESTING FOR PHYSICAL COMPUTING

Table 5.1: Summary of mutation operators

Mutation
Full name Definition

operator

OVR Output Value Replacement replace HIGH to LOW (and vice versa) in the out-
put value

OSR Output Setting Removal delete the output setting function
PNR Pin Number Replacement replace the pin id with its surrounded pin ids
IVR Input Value Replacement replace HIGH to LOW (and vice versa) in the in-

put value
EDR Edge Detection Replacement replace edge names among {FALLING, RISING,

BOTH}
IOMR I/O Mode Replacement replace IN to OUT (and vice versa) in the mode

setting
SIR Setup Input Replacement replace the input value from PUD_UP to

PUD_DOWN (and vice versa) in setup func-
tion

SOR Setup Output Replacement replace the output value from HIGH to LOW (and
vice versa) in setup function

SVR Setup Value Removal remove the initial value setting in setup function
for both input and output modes

two mutation operators:

• InputValueReplacement (IVR): replaces HIGH to LOW (and vice versa) in the input
value

• EdgeDetectionReplacement (EDR): replaces FALLING to RISING (and vice versa)
in the edge detection. However, sometimes, there is one more edge event called
BOTH which covers both the falling and rising edge. In this case, the replacement
happens among the three edge events, e.g., replace FALLING to RISING and BOTH.

(5) I/O pin mode errors: A GPIO pin allows to define each individual pin on the chip
as being in input or output mode. As a side-effect of pin number mistakes, the program-
mer might set the pin I/O mode by mistake. Thus we designed the I/OModeReplacement
(IOMR) operator that changes IN to OUT (or vice versa).

(6) initial setup value errors: If a pin is not “connected” to a peripheral, it will “float”.
In other words, the value that is read in is undefined because it is not connected to any-
thing. It could frequently change values as a result of receiving mains interference. To get
around this, GPIO modules usually provide an option to use a pull-up (PUD_UP) or pull-
down (PUD_DOWN) resistor to set the default value of the input. Two potential errors
in this context are (1) the omission of setting up the input value or (2) initializing it with
the opposite value by mistake. Similarly, for the output mode, pins can have different
default output values in a single GPIO module. The initial output value affects the ini-
tial state of the peripheral that the pin is connected to, which could lead to a breakdown
or unexpected activation. For instance, if the pin connected to a motor is initially set
to HIGH, then once the module is activated, the motor is immediately activated which
is supposed to be activated when the switch is on. The potential errors in output value
setup are similar to the input value setup, i.e., the setup omission and the initial value
mistakes. Accordingly, there are three mutation operators:

• SetupInputReplacement (SIR): replace the input value from PUD_UP to PUD_DOWN
(and vice versa) in setup function.

5.4. TOOL IMPLEMENTATION

5

129

• SetupOutputReplacement (SOR): replace the output value from HIGH to LOW (and
vice versa) in setup function.

• SetupValueRemoval (SVR): remove the initial value in setup function for both input
and output modes.

Summary: We designed nine mutation operators (summarised in Table 5.1) to repli-
cate common communication errors in physical computing systems.

5.4. TOOL IMPLEMENTATION
Various modern embedded platforms contain the GPIO module, such as Arduino, Bea-
gleBone, PSoC kits and Raspberry Pi. In this chapter, we chose Raspberry Pi and Arduino
as the target platforms to implement the aforementioned mutation operators. One thing
to note is that our approach should work with the other aforementioned platforms as
well.

We have coined our mutation tool MUTPHY and implemented it in Python. The over-
all architecture of MUTPHY is shown in Figure 6.4. MUTPHY consists of two components,
i.e., the mutation engine and the test executor. MUTPHY takes the program and its test
suite as input. First, the mutation engine analyses the source code and marks all possible
mutation points, and then the mutation generator produces all the mutants according
to mutation operators. After that, the program and generated mutants together with the
test suite go to the test executor where the mutation testing is performed: each mutant
is executed against the test suite one by one. Finally, MUTPHY prints out the detailed
mutant killable results. The main task of the code analyser is to analyse the test de-
pendencies and parse the source code of the program for the mutation generator. The
mutation generator contains all the mutation operators and the details of the mutants
including the mutation location (line number) and the mutation operator type.

As Raspberry Pi and Arduino are the target platforms, we have created two variants of
MUTPHY. The main differences between the two variants are inherent to the program-
ming languages that are supported by two platforms. For Raspberry Pi, the code analyser
of MUTPHY needs to parse Python, as Python is Raspberry Pi’s recommended program-
ming language. As Arduino only supports C/C++, we created a C/C++ code analyser in
MUTPHY for Arduino. Moreover, we considered pytest [27], a non-boilerplate alternative
to Python’s standard unittest testing framework [40], as the test executor for both the
Raspberry Pi and Arduino platforms , as it can also handle other popular Python testing
libraries, e.g. unittest and doctests [7].

5.5. EMPIRICAL EVALUATION
To assess the efficacy of our mutation testing approach, we conducted an experimental
study using two embedded system platforms, i.e. Raspberry Pi and Arduino. We pro-
posed the following research questions to steer our experimental study:

• RQ5.1: How effective is MUTPHY in evaluating the existing test suite? With this
research question, we evaluate to what extent MUTPHY can effectively evaluate
the quality of the existing test suite.

5

130 5. MUTATION TESTING FOR PHYSICAL COMPUTING

Figure 5.1: Overview of MUTPHY architecture and workflow

• RQ5.2: How efficient is MUTPHY in generating non-equivalent mutants? As we
designed the mutation operators based on common mistakes made by program-
mers, this might lead to potential redundant mutation operators which are sub-
sumed by others. RQ5.2 addresses the efficiency of MUTPHY in generating non-
equivalent mutants.

• RQ5.3: Is it possible to kill all non-equivalent surviving mutants by adding extra
test cases? This research question focuses on non-equivalent surviving mutants
and aims to assess whether our approach enables engineers to write a better test
suite.

For RQ5.1, we determined the effectiveness of our approach based on the number
of non-equivalent surviving mutants. Also, we compared our results to test coverage. To
answer RQ5.2, we manually analysed the generated mutants to determine whether the
mutant is equivalent to the original program. For RQ5.3, we analysed the non-equivalent
surviving mutants in detail and tried to manually engineer new test cases to kill these
mutants.

5.5.1. CASE STUDIES WITH RASPBERRY PI
In the first part of the experiment, we use five Raspberry Pi based projects for evaluating
MUTPHY. For these five projects, four are obtained from GitHub, and one is from indus-
try (Guangzhou Kompline Electronics). The four open source projects have been man-
ually selected from GitHub under the Raspberry Pi topic using the following process: we
(1) sorted by stars (from high to low), (2) checked whether they contain “GPIO" as a key-
word, (3) verified that they are implemented in Python, and (4) examined whether they
can be successfully built, and (5) inspected whether they contain a test suite. Since our
main focus is the GPIO interface, we only apply mutation operators on the files that use

5.5. EMPIRICAL EVALUATION

5

131

Table 5.2: Subjects based on Raspberry Pi

Project File LOC #Tests Coverage

RPLCD gpio.py 99 35 71%
hcsr04sensor sensor.py 93 6 96%
jean-pierre buzzer.py 20 21 41%
gpiozero mock.py 312 302 97%
four-wheel robot arm.py 179 11 93%

chassis.py 158 4 100%

Total 861 379 82.8%

Note: Column “LOC" standing for the line of
code is measured by sloccount[363]. Column
“Coverage" means statement coverage measured by
Coverage.py[5].

the GPIO library. Table 5.2 summarises the main characteristics of the selected projects.
When answering the RQs in the next sections, we will start with RQ5.2, as we need to

analyse non-equivalent mutants to calculate the mutation score which is part of RQ5.1.

RPLCD

The project RPLCD [66] is a Python 2/3 Raspberry PI Character LCD library for the Hi-
tachi HD44780 [16] controller. The main peripheral of this system is a LCD module.

Table 5.3: Mutants result of RPLCD

MOP #Generated #Covered #Alive #Killed #Equiv. MS

OVR 13 10 13 0 0 0
OSR 11 10 11 0 1 0
PNR 47 41 47 0 0 0
IVR 0 0 0 0 0 -
EDR 0 0 0 0 0 -

IOMR 1 1 1 0 0 0
SIR 0 0 0 0 0 -
SOR 0 0 0 0 0 -
SVR 0 0 0 0 0 -

Overall 72 62 72 0 1 0

Note: Column “MOP" means mutation operator. Column
“#Equiv." means the number of the equivalent mutants. Column
“MS" means nutation score.

Using MUTPHY, we generated 72 mutants for the RPLCD project. This project mainly
uses the GPIO.output method to write data to the LCD board, thus, only four types of
mutation operators can be applied to the system: OVR, OSR, PNR and IOMR. The de-
tails of all generated mutants are presented in Table 5.3. We can see from Table 5.3 that
only one equivalent mutant is generated by MUTPHY. This equivalent OSR mutant is lo-
cated in a statement that, under the existing test configuration, cannot be reached. Thus,

5

132 5. MUTATION TESTING FOR PHYSICAL COMPUTING

for this LCD controlling system, the efficiency of MUTPHY in generating non-equivalent
mutants is promising (RQ5.2).

While the statement coverage is 71%, the mutation score is zero. Furthermore, 86.1%
of mutants are covered by the test suite, but none of the mutants is actually killed. Why
then is the mutation score of this project so low? We found that the developers replaced
the RPi.GPIO module of the system under test with mock objects; this allows the tests
to be executed without a Raspberry Pi. As a side effect, the developers did not assess
the communication between the software and peripherals for this system. The above
findings indicate that compared to statement coverage, the mutation score can better
represent how a test suite examines the behaviour of GPIO pins (RQ5.1).

To kill the mutants (RQ5.3), we first removed the mock objects for the RPi.GPIO mod-
ule and executed the test suite on an actual Raspberry Pi. This modification led to 21
PNR and 1 IOMR mutants killed. Then, we analysed whether the remaining mutated
statements are covered by the tests or not. As shown in Table 5.3, we found 85.2% non-
equivalent mutants to be covered by the test suite. However, the existing test suite only
calls the functions in gpio.py file, but does not check the behaviour of the GPIO pins.
To address this drawback of the existing test suites, we added five test cases to examine
all the pins once their states changed. To capture the state change sequence of GPIO
pins, we introduced new mock objects. Different from the system developers’ mock ob-
jects, we used mock objects to increase the observability of the system under test. For
instance, one method in gpio.py file called pulse_enable(), that sends a pulse signal to
tell the LCD board to process the data. The method pulse_enable() calls GPIO.output
three times in one pin generating a LOW-HIGH-LOW signal. Without a mock object of
method GPIO.output, it is hard to tell what happens to this pin after this function call, as
the starting and the ending states are both LOW. With the additional five test cases, all
the non-equivalent mutants are killed.

hcsr04sensor

The hcsr04sensor project [60] is a Python module for measuring distance and depth with
a Raspberry Pi and HC-SR04 Ultrasonic Module [16], which uses sonar to determine the
distance to an object, just like bats or dolphins do. The sensor first emits ultrasound
at 40,000 Hz, which travels through the air and if there is an object or obstacle on its
path, the ultrasound will bounce back to the module. Considering the travel time and
the speed of the sound, it calculates the distance. The HC-SR04 Ultrasonic Module has 4
pins: Ground, VCC, Trig and Echo.

Table 5.4 details the generated mutants for hcsr04sensor. In total, MUTPHY generated
41 mutants. For this system, the Raspberry Pi controls the HC-SR04 Ultrasonic Module
by writing to the Trig pin and reading from Echo. As such, this control program mainly
adopts GPIO.output and GPIO.input methods. This results in five types of mutants from
OVR, OSR, PNR, IVR and IOMR operators. There are no equivalent mutants generated
by our proposed mutation operators; this indicates MUTPHY has high efficiency in gen-
erating non-equivalent mutants (RQ5.2).

For RQ5.1, although 100% of the mutants are covered, 22% of the mutants are not
detected by the test suite. Looking at the existing test suite, we found that the test suite
checked all the initial settings of each GPIO pins, but lacks tests to (1) examine the pins’

5.5. EMPIRICAL EVALUATION

5

133

Table 5.4: Mutants result of hcsr04sensor

MOP #Generated #Covered #Alive #Killed #Equiv. MS

OVR 3 3 1 2 0 0.67
OSR 3 3 1 2 0 0.67
PNR 31 31 7 24 0 0.77
IVR 2 2 0 2 0 1
EDR 0 0 0 0 0 -

IOMR 2 2 0 2 0 1
SIR 0 0 0 0 0 -
SOR 0 0 0 0 0 -
SVR 0 0 0 0 0 -

Overall 41 41 9 32 0 0.78

Note: Column “MOP" means mutation operator. Column
“#Equiv." means the number of the equivalent mutants. Column
“MS" means nutation score.

state changes during the execution and (2) the final states after tearing down. For this
project, it is important to clean up the Trig and Echo pins after use, because otherwise
the distance cannot be accurately calculated by a new request to the ultrasonic sensor.
This gives another indication that mutation score is a better metric of test suite quality
than statement coverage, which only reveals insufficient tests for the system.

Regarding RQ5.3, we observe seven PNR mutants that are still alive; all originating
from the GPIO.cleanup function. To kill these mutants, we need to add two additional
assertions at the point just after the pins are torn down which means the pins are not
used anymore. Once the pins are torn down, they cannot be read from or written to
anymore, so the assertions expect exceptions when trying to read those pins.

The other two alive mutants, one of type OVR and one other of type OSR, are located
on the same line, more precisely when calling the GPIO.output function. Similar to the
pulse_enable() method in project RPLCD, this GPIO.output function is meant to send a
LOW value, the first stage of the pulse signal. We follow a similar strategy in that we try
to introduce mock objects to increase the observability, but this modification led to a
syntax error: a local variable sonar_signal_on is referenced before assignment. Through
further investigation, we found that this local variable is only assigned right after the
Echo pin detects a HIGH signal via the GPIO.input function, while in the situation with
mocks, the GPIO.input function is not actually invoked. This leaves us in the situation
that if we do not introduce mock objects, the state change of this GPIO.output function
cannot be observed, while if we do introduce mock objects, there is a syntax error.

The aforementioned observation is a case of a snarled method, a term coined by
Feathers to describe a method dominated by a single large, indented section [138]. Feath-
ers suggest to perform an extract method refactoring to move all the statements related to
the pulse signal into a separate method [138]. In doing so, we create a function pulse_enable()
and we separate responsibilities of this snarled method. As a result, we can easily test the
state change caused by the target GPIO.output function without affecting the remaining
part. For these two mutants, it is hard to derive new tests to kill them without refactoring
the original production code. Through refactoring, the statement where the mutants are

5

134 5. MUTATION TESTING FOR PHYSICAL COMPUTING

located is moved from a long method to a short one, thus, improving the observability of
the state change made by the statement. This raises an interesting speculation: the testa-
bility of the production code [254] could have an influence on the test suite’s mutation
score. In Voas et al.’s work [355], they proposed that software testability could be defined
for different types of testing, such as data-flow testing and mutation testing. Their work
inspires us to explore the relationship of software testability and mutation testing in the
future work.

jean-pierre

The project jean-pierre [94] is a little DIY robot based on the Raspberry Pi Zero W [29]. It
uses a camera to scan food barcodes: it fetches information about the product from the
OpenFoodFacts API [25] and adds it to a grocery list that the user can manage from a web
interface. Once an object is successfully added to the grocery list, a buzzer makes two
beeps. This system consists of three components: a Raspberry Pi Zero W, a Raspberry
Pi Camera Module [28] and a buzzer. The main use of the GPIO pins in this project is to
control the buzzer (buzzer.py file).

Table 5.5: Mutants result of jean-pierre

MOP #Generated #Covered #Alive #Killed #Equiv. MS

OVR 2 0 2 0 0 0
OSR 2 0 2 0 0 0
PNR 6 0 6 0 0 0
IVR 0 0 0 0 0 -
EDR 0 0 0 0 0 -

IOMR 1 0 1 0 0 0
SIR 0 0 0 0 0 -
SOR 0 0 0 0 0 -
SVR 0 0 0 0 0 -

Overall 11 0 11 0 0 0

Note: Column “MOP" means mutation operator. Column
“#Equiv." means the number of the equivalent mutants. Column
“MS" means nutation score.

As the buzzer only has one function, i.e., beep(), it mainly adopts the GPIO.output
function. When running our tool, 11 mutants are generated (shown in Table 5.5). For
RQ5.2, no equivalent mutant is generated, which shows MUTPHY’s high efficiency in
generating non-equivalent mutants. For RQ5.1, we can see that the mutation score is 0
while the statement coverage is 41%. Although the statement coverage is 41%, none of
the generated mutants is covered by the test suite. Closer inspection revealed that there
are no tests in the existing test suite that are specifically designed to test the commu-
nication of the software and the buzzer. We can see that the mutation score enables to
evaluate how the test suite examines the integration part of the software and peripherals
in physical computing systems, while the test coverage cannot.

To kill the mutants (RQ5.3), we first added a test case to cover the mutants with-
out assertions. Once the mutated statements are covered, i.e., the statement coverage
reaches 100%, the six alive PNR and one alive IOMR mutants are killed. These seven
mutants can easily be detected once the mutated GPIO pins are invoked, because the

5.5. EMPIRICAL EVALUATION

5

135

RPi.GPIO module throws exceptions if these pins are either not initialised or initialised
incorrectly. For instance, GPIO8 pin is called without initialisation, or GPIO9 pin is writ-
ten to HIGH after being initialised to input mode. Then, to kill the remaining four sur-
viving mutants, we again introduced mock objects to assess each state change made by
the GPIO.output function. By designing effective test oracles to test the state change of
the GPIO pins using mock objects, all the mutants are killed.

gpiozero

The project gpiozero [308] is a simple interface to GPIO devices with Raspberry Pi, which
requires minimal boilerplate code to get started. This project is developed by the Rasp-
berry Pi Foundation. This library provides many simple and obvious interfaces for the
essential components, such as LED, Button, Buzzer, sensors, motors and even a few sim-
ple add-on boards.

Table 5.6: Mutants result of gpiozero

MOP #Generated #Covered #Alive #Killed #Equiv. MS

OVR 2 2 0 2 0 1
OSR 1 1 0 1 0 1
PNR 68 68 0 68 0 1
IVR 6 6 0 6 0 1
EDR 19 19 0 19 0 1

IOMR 14 14 0 14 0 1
SIR 8 8 0 8 0 1
SOR 2 2 0 2 0 1
SVR 5 5 1 4 1 1

Overall 125 125 1 124 1 1

Note: Column “MOP" means mutation operator. Column
“#Equiv." means the number of the equivalent mutants. Column
“MS" means nutation score.

Table 5.6 shows the 125 mutants generated by MUTPHY. For RQ5.2, there is only one
equivalent mutant generated by MUTPHY. This equivalent mutant of type SVR stems
from the initial value being removed from the setup function, yet with the default output
value being the same as the initial value, there is an equivalence. For RQ5.1, the muta-
tion score of this project is 1, which shows the existing test suite is adequate to detect all
the mutants. One necessary condition for such a high mutation score is high test cover-
age. We can see that the statement coverage of the existing test suite is 97% and all the
mutated statements are covered by the test suite. Moreover, there are 302 test cases in
the existing test suite. Looking at the tests in detail, we found that each test case not only
examines the basic information of the pin under test, i.e., the pin number and the pin
state, but also other possible settings of the pin, e.g., I/O pin mode and resistor state. As
the mutation score of this project has already achieved 1, there is no need for us to add
extra tests to enhance the test quality (RQ5.3). From project gpiozero, we can conclude
that the test suite can indeed achieve 100% mutation score when the GPIO pins are taken
into consideration in tests and test oracles are carefully designed.

5

136 5. MUTATION TESTING FOR PHYSICAL COMPUTING

Figure 5.2: Three-view diagrams of four-wheel robot

four-wheel robot

This subject is a four-wheel robot, which has been designed and developed for indus-
trial use (as shown in Figure 5.2). The robot is capable of moving pie-shaped objects
from one place to another. During the movement, the robot may optionally rotate the
object by at most 2º rad, and the four wheels can move it in six directions (as presented
in Figure 5.3). The robot includes one Raspberry Pi 2, five photoelectric sensors, two DC
motors, four stepper motors and three servos. The photoelectric sensors are mainly used
to align the robot in specific positions (e.g., the starting point and the destination) based
on differently coloured regions. The four stepper motors are responsible for the move-
ment of the four wheels. As for the two DC motors, one drives the vertical movement
of the robotic arm; the other is for the rotation of the arm. The three servos are used
to control the action of the claw to grab the pie-shaped objects. The control system of

5.5. EMPIRICAL EVALUATION

5

137

Figure 5.3: Movement directions of four-wheel robot

the robot consists of two parts, the chassis (chassis.py) and the arm (arm.py). The chas-
sis part has 13 functions, and the arm part consists of 13 functions. The entire system’s
footprint comprises 337 lines of code. To set up a safe environment for testing, there is
one test track with black and white lines designed for the robots. All the test cases are
based on this test track. The test suite for the four-wheel robot system consists of 15 test
cases totalling 243 lines of code. The statement coverage of the test suite is 96.5%.

Using MUTPHY, we generated 371 mutants. The summarised result of all generated
mutants is presented in Table 5.7. For RQ5.2, we found there are 10 equivalent mutants
generated by MUTPHY. Similar to project gpiozero, all the equivalent mutants are of type
SVR, where the initial value assignment in the setup function is removed. The cause of
the equivalence is also similar: the initial default value is the same as the explicitly set
initial value. Although these mutants are equivalent to the original program, explicitly
setting the initial value in the setup function is still recommended because different em-
bedded platforms have different default values and setting the initial value can avoid
unexpected initial states. In conclusion, for the four-wheel robot system, the efficiency
of MUTPHY in generating non-equivalent mutants is high (97.3%).

For RQ5.1, the overall mutation score is 0.83, which is lower than the statement cov-
erage (96.5%). The three mutation operators with the highest mutation score are IOMR
(1), PNR (0.91) and IVR (0.81). The first two mutation operators are easier to be killed
than the others because these mutants can be detected once the mutated GPIO pins are

5

138 5. MUTATION TESTING FOR PHYSICAL COMPUTING

Table 5.7: Mutants result of four-wheel robot

MOP #Generated #Covered #Alive #Killed #Equiv. MS

OVR 32 32 10 22 0 0.69
OSR 32 32 12 20 0 0.63
PNR 235 235 20 215 0 0.91
IVR 21 20 4 17 0 0.81
EDR 0 0 0 0 0 -

IOMR 19 19 0 19 0 1
SIR 3 3 3 0 0 0
SOR 13 13 7 6 0 0.46
SVR 16 16 15 1 10 0.17

Overall 371 370 71 300 10 0.83

Note: Column “MOP" means mutation operator. Column
“#Equiv." means the number of the equivalent mutants. Column
“MS" means nutation score.

invoked: in most cases, these pins are not initialised or initialised correctly (e.g., replace
the output mode to the input mode). The 20 alive mutants from PNR are because of
insufficient assertions in the tests suite; these missing assertions are needed to check
the mutated statements. For IVR, as the input pins of the robots are connected to pho-
toelectric sensors that are used to align the robot, most IVR mutants are easily killed if
the robot does not reach the specific position by reading the un-mutated photoelectric
sensors’ states. For the four alive IVR mutants, one is due to uncovered statements; the
other three are due to poor test design.

The three mutation operators with lowest mutation score are SIR (0), SVR (0.08) and
SOR (0.46). The reason why none of the SIR mutants is killed is that the corresponding
pins are connected to the peripherals (in particular, the photoelectric sensors) with very
high resistors; this means the replacement of initial input value (PUD_UP or PUD_DOWN)
cannot affect the overall potential. These alive mutants cannot be killed in this case,
and even adding new tests would not make a difference. For SVR, the five alive non-
equivalent mutants are due to insufficient assertions of the tests suite: the existing test
suite does not examine all the initial states of the GPIO pins. The low mutation score of
the SOR operator is due to inadequate tests that do not examine the initial states of the
GPIO pins once the program starts.

The mutation score of mutants generated from OVR and OSR are 0.69 and 0.63, which
is lower than we expected. The alive mutants of these two operators are due to mean-
ingless feedback produced by the control program, and the test oracles are based on
these feedback messages. For instance, the function lift() in arm.py lifts the arm for
a given direction (up or down) and a period. Once the lift() call is finished, the func-
tion returns the input direction. This kind of feedback does not reflect the actual states
of the GPIO pins. Thus, the corresponding tests can never fail. To kill these surviving
mutants, we replaced GPIO.output functions with mock objects to assess intermediate
states of the target pins. For the five mutants that are located in the method lift(), in-
troducing mock objects enables to effectively detect these mutants. However, the 17
other mutants cannot be easily killed by making use of mock functions. These 17 mu-

5.5. EMPIRICAL EVALUATION

5

139

tants reside in complicated methods with loops and input detections. Similar to project
hcsr04sensor, the intermediate changes cannot be easily captured and observed by intro-
ducing mock objects, as the sequence of the method calls is uncertain (another case of
a snarled method [138]). Thus, we need to refactor the original control program by mov-
ing the related GPIO.output function calls into new methods; this enabled us to design
accurate test oracles to examine the state changes.

For RQ5.3, we managed to kill the 51 non-equivalent alive mutants by adding and im-
proving test cases. The remaining 20 non-equivalent surviving mutants cannot be killed
by simply adding tests. Among the 20 mutants, 17 mutants can be killed by refactor-
ing the production code. This observation strengthens our earlier assumption that the
mutation score could be influenced by the testability of the production code. The other
three non-killable SIR mutants are caused by the peripherals. More precisely, for the af-
fected circuits the overall potential cannot be changed by pulling up or down resistor, as
the resistor of peripherals is too high to be changed by the Raspberry Pi’s function. This
type of stubborn mutants is unique to physical computing systems when compared to
conventional software; it also increases the difficulty of testing physical computing sys-
tems. We suggest to classify this type of stubborn mutants as equivalent mutants, as the
peripherals are part of the system, and generally, this part is not likely to change once
the system is built up.

5.5.2. CASE STUDIES WITH ARDUINO
The second part of our experiment targets the Arduino platform. The Arduino based
system is taken from a lab session of an Embedded Software course for second-year un-
dergraduate students at Delft University of Technology. The system is a robot that uses
a camera instead of light or IR sensors to follow a line. It is shown in Figure 5.4 and is
composed of of three components, each with a different role:

1. Smartphone: the camera of the smartphone is mounted on the robot makes im-
ages of the floor in front of the robot where the line should be detected;

2. Laptop: the laptop runs the Robot Operating System (ROS) core [281] and per-
forms line detection on the images of the smartphone;

3. Arduino-based robot: the robot has to follow the line on the ground. This part
includes one LCHB-100 H-bridge [20], one Arduino Mega ADK [55], one HC-05
Bluetooth dongle and one HC-SR04 ultrasonic sensor.

The students are required to implement the control program for the Arduino board and
the line detection program based on ROS in groups of two. We collected implementa-
tions from four groups (the average LOC is 122.5 measured by sloccount[363]), and then
the teaching assistant was asked to design test suites for those implementations. The
main purpose of the test suites are to examine the five behaviours of the robot, i.e., go-
ing straight, turning left, turning right, stopping when there is an obstacle in front and
stopping when no image is received. However, since the implementations of different
groups are different from each other, we have to adjust the details of the tests to make
them pass for further mutation testing. The statement coverage of the test suite is 100%.

5

140 5. MUTATION TESTING FOR PHYSICAL COMPUTING

Figure 5.4: Diagram of line-follower robot

TEST ENVIRONMENT

The testing system is expected to be as isolated as possible from the program under test.
In particular, the testing system should monitor the GPIO signals while keeping the code
untouched. However, since the requirements of the student codes do not include the
testing part, most of them cannot be tested without altering the codes. The reasons are
as follows: first of all, the Arduino platform does not support multi-process nor multi-
threading and thus only allows one main loop during execution. For the line-follower
robot, the Arduino control program needs to be running continuously to receive opera-
tion signals from the PC as a client. Secondly, the test execution should be independent
of the control program as a second process. In order to not introduce another process,
we have to alter the students’ code by adding test cases in the same program. This re-
sults in modifications and uncertainties in the control program. Therefore, we worked
around the software limitation by adding a hardware monitor as shown in Figure 5.5.
More specifically, we used another Arduino board (Arduino Uno [56]) to monitor the pin
states of the control board of the line-follower robot.

The hardware monitor picks up two types of signals from the system under test.

• Pulse Width Modulation (PWM) signals for the two DC motors for the wheels.
Each DC motor occupies a pair of PWM channels for the two rotational directions
(controlled via LCHB-100 H-bridge). Therefore, the two DC motors take four PWM
channels in total. We program the monitor hardware to sample the signals from
the four channels at regular intervals. Thus, we can know whether the signal is
high or low at each interval. We then approximate the duty cycle by calculating
the ratio between the number of high signals and that of all signals. For instance,
there are 100 high signals out of 500 detected in five seconds for one PWM channel.
Thus, the approximated duty cycle is 20%.

5.5. EMPIRICAL EVALUATION

5

141

Figure 5.5: Layout of test setup of line-follower robot

• Standard digital signals from the ultrasonic distance sensor. The sensor (HC-
SR04) has a trigger pin and an echo pin. The trigger pin is used to emit ultrasound
at 40,000 Hz, and the ultrasound signal is received in the echo pin. A test may
override the echo signal of the sensor to create a simulated situation in which the
robot detects a wall or an obstacle. The trigger pin is programmed to send an
ultrasound continuously in this robot, which is independent of the simulation, so
we use a single channel to emulate the echo signal.

To fully automate the testing process, we removed the chassis part from the Arduino-
based robot, which does not influence the states of the PWM channels but prevents
the robot from moving physically. Because our test oracles are based on the PWM sig-
nals of the DC motors to examine the robot’s behaviour without the information of the
physical location. For example, we designed the assertion for the robot turning left as
right_fwd_pwm > right_fwd_pwm, where the forward PWM signal of the right motor is
greater than that of the left motor. As a consequence, the whole mutation testing process
is automated and requires no human observations.

RESULT

The overall mutation scores of the four implementations are quite similar, i.e., 0.34, 0.36,
0.39 and 0.40. The test suites examine the five movements of the robots; they are al-
most the same for the four student projects that we consider. Table 5.8 summarises the
mutants for these four implementations. We observe that 416 mutants have been gener-
ated. We did not find equivalent mutants amongst the generated mutants (RQ5.2). This

5

142 5. MUTATION TESTING FOR PHYSICAL COMPUTING

Table 5.8: Mutants result of line-follower robot

MOP #Generated #Covered #Alive #Killed #Equiv. MS

OVR 38 38 26 12 0 0.32
OSR 34 34 25 9 0 0.26
PNR 298 298 184 114 0 0.38
IVR 0 0 0 0 0 -
EDR 0 0 0 0 0 -

IOMR 36 36 19 17 0 0.47
SIR 4 4 2 2 0 0.50
SOR 3 3 2 1 0 0.33
SVR 3 3 3 0 0 0.00

Overall 416 416 261 155 0 0.37

Note: Column “MOP" means mutation operator. Column
“#Equiv." means the number of the equivalent mutants. Column
“MS" means nutation score.

is likely due to the control program of the Arduino being quite simple: it is mainly a sig-
nal receiver for the ROS core. The key program, the image processing program, on the
other hand, is located on the PC side.

For RQ5.1 we note that while the statement coverage of the test suite is 100%, the
overall mutation score is 0.37. Further investigation of the test suite leads us to the fact
that the existing test suite lacks assertions to examine all the target pins. In fact, the test
suite only checks the states of two pins which control the forward direction of the motors
(i.e. the 1FWD and 2FWD ports in the LCHB-100 H-bridge). Ideally, the test suite should
check the four pins connected to the other ports of the LCHB-100 H-bridge.

To kill the alive mutants (RQ5.3), we added four assertions in each test case to en-
sure the correct states of the pins connected to the LCHB-100 H-bridge that controls the
movement of the motors. This improvement resulted in 201 mutants being killed. How-
ever, there are still 60 mutants surviving after the modification. These 60 mutants are
hard to kill due to the limitations of our test environment setup. Among the 60 stub-
born mutants, 20 mutants are related to a pin that the hardware monitor did not track.
This pin is to control an LED which students mostly used for debugging purposes. These
20 mutants could be killed if we monitor the states of the LED pin and add specific as-
sertions for it. The remaining 40 mutants are hard to kill because our test environment
can only monitor the pin states of the robot. This means that we cannot further check
the other settings of the pins, e.g., the pin mode and resistor state, as we can do in the
Raspberry Pi platform. This type of stubborn mutants is different from the previously
observed stubborn mutants in the hcsr04sensor and four-wheel robot projects, where
the stubbornness was due to software testability issues. As mentioned in Section 5.5.2,
limitations of the Arduino platform prevent us from touching the codebase of the control
program directly. The adoption of the hardware monitor treats the system as a black box;
this restricts the features that we can test in this system, such as the internal settings of
the pins. For this line-following robot, 90.4% non-equivalent surviving mutants can be
killed by adding extra test cases, while the rest mutants are not killable due to test setups.

5.5. EMPIRICAL EVALUATION

5

143

Table 5.9: Mutants result of all subjects

MOP #Generated #Covered #Alive #Killed #Equiv. MS

OVR 90 85 52 38 0 0.42
OSR 83 80 51 32 1 0.39
PNR 685 673 264 421 0 0.61
IVR 29 28 4 25 0 0.86
EDR 19 19 0 19 0 1.00

IOMR 73 72 21 52 0 0.71
SIR 15 15 5 10 0 0.67
SOR 18 18 9 9 0 0.50
SVR 24 24 19 5 11 0.38

Overall 1036 1014 425 611 12 0.60

Note: Column “MOP" means mutation operator. Column
“#Equiv." means the number of the equivalent mutants. Column
“MS" means nutation score.

5.5.3. SUMMARY

Based on the case studies on the Raspberry Pi and Arduino platforms, we evaluated our
method in terms of the efficiency in generating non-equivalent mutants (RQ5.2) and
the effectiveness in evaluating the test suite quality (RQ5.1). Moreover, we also manu-
ally analysed non-equivalent surviving mutants to explore whether the mutation score
can be improved by implementing new or improved tests (RQ5.3). In this section, we
summarise all results of all subjects involved in our experimental study (as shown in Ta-
ble 5.9) and answer the three research questions in the light of our observations.

Table 5.9 indicates that there are 1036 mutants generated in total, with the PNR mu-
tants comprising 66.1% of the total. The EDR mutants are easiest to kill, while the OSR
and SVR mutants are most difficult to kill. For RQ5.2, the overall percentage of non-
equivalent mutants is 98.8%, which is quite promising. The equivalent mutants mainly
stem from SVR (one from project gpiozero and ten from project four-wheel robot). How-
ever, the equivalent versions without the initial value setup are not recommended since
different embedded platforms have different default values. Explicitly setting the initial
value in the setup function can avoid unexpected initial states. The other equivalent one
arises from OSR, which is due to dead code (see project RPLCD in Section 5.5.1). Besides,
three SIR mutants are non-killable which are caused by the circuit of the peripherals. We
considered these mutants as equivalent mutants in the context of physical computing
systems. Even taking the three SIR mutants into consideration, the non-equivalent mu-
tants still comprise 97.5% of the total number of mutants, showing MUTPHY has high
efficiency in generating non-equivalent mutants.

For RQ5.1, compared to the statement coverage, the mutation score generated by
our method can be a better indicator of test suite quality. More specifically, the mutation
score can evaluate how well the test suite examines the integration part of the software
and peripherals in physical computing systems, something the statement coverage does
not allow. Except for project gpiozero, all the non-equivalent alive mutants reveal the
inadequate test cases in the existing test suite. This is especially true for project RPLCD,
for which the mutation score is 0, while the statement coverage is 71%.

5

144 5. MUTATION TESTING FOR PHYSICAL COMPUTING

For RQ5.3, 94.2% of the mutants, in most cases, it is possible to kill all non-equivalent
surviving mutants by adding extra test cases, which again supports RQ5.1 that mutation
score can effectively evaluate the existing test suite. The exception being 59 mutants.
The Raspberry Pi case studies account for 19 of these mutants: 2 mutants from project
hcsr04sensor and 17 mutants from project four-wheel robot. Killing these mutants would
require refactoring the production code to increase the observability of state changes.
This implies that test quality is not the only factor to determine the mutation score, as
the testability of the production code can also impact the mutation score. Moreover, in-
troducing mock objects is a double-edged sword. If the mock objects are used properly,
the behaviour of the GPIO pins cannot be examined, e.g., replacing the whole RPi.GPIO
module to mock objects in project RPLCD. While proper use of mock objects can im-
prove the observability of intermediate state changes to derive high-quality tests (see
project hcsr04sensor and project four-wheel robot). For Arduino, 40 mutants remain not-
killed as our test setups are unable to assess the internal settings of the system. A deeper
analysis of these 40 mutants reveals that factors such as the testability of the software
under test and the test setup influence the mutation score. We would like to explore
these potential factors in the future work to further understand mutation testing and
thus improve it.

5.6. THREATS TO VALIDITY
External validity: First, our results are based on the Raspberry Pi and Arduino platforms;
these results might be different when using other embedded platforms. Second, con-
cerning the subject selection, we only chose nine physical computing systems in total
to evaluate our approach. Unfortunately, few physical computing systems on the Rasp-
berry Pi and Arduino platforms with up-to-date test suites are publicly available.

Internal validity: The main threat to internal validity for our study is the implemen-
tation of MUTPHY for the experiment. To reduce internal threats to a large extent, we
carefully reviewed and tested all code for our study to eliminate potential faults in our
implementation. Another threat to internal validity is the detection of equivalent mu-
tants through manual analysis. However, this threat is unavoidable and shared by other
studies that attempt to detect equivalent mutants.

Construct validity: The main threat to construct validity is the measurement we
used to evaluate our methods. We used the percentage of non-equivalent mutants and
the mutation score as key metrics in our experiment, both of which have been widely
used in other studies on mutation testing.

5.7. RELATED WORK
There has been a great deal of work on verification and validation of embedded sys-
tems (not limited to physical computing systems) in literature. The main methodolo-
gies are static analysis (e.g., [64, 357]), dynamic analysis (e.g., [309, 352]), formal verifica-
tion (e.g., [209, 223]), black-box testing (e.g., [334, 341]), and white-box testing (e.g., [233,
383]).

Most related to our approach are software-implemented fault injection (SWIFI) tech-
niques that inject faults pre-runtime at machine code level (e.g., by changing the con-

5.8. CONCLUSION & FUTURE WORK

5

145

tent of memory/registers based on specified fault models) to emulate the consequences
of hardware faults [152]. One of the earliest SWIFI techniques was presented by Segall et
al. [316]. Their technique’s initial results showed usefulness in reducing the fault injec-
tion complexity and validation of the system. Later, in 1995, Kanawati et al. [205] pro-
posed a flexible software-based fault and error injection system, which is useful in eval-
uating the dependability properties of complex systems. More recently, Arlat et al. [58]
compared physical and software-implemented fault injection techniques. As shown in
their results, these two types of fault injection techniques are rather complementary,
while SWIFI approaches are preferable mainly due to high controllability, repeatability
and cost-effectiveness. All the above works focus on hardware testing, and more specifi-
cally, the kernel layer. None of them considers the communication between the software
and peripherals in physical computing systems.

Concerning the application of mutation testing in embedded systems, Zhan et al. [376],
He et al. [175] and Stephan et al. [330] have addressed the notion of Simulink model mu-
tations. They proposed a set of mutation operators explicitly for Simulink that target the
run-time properties of the model, such as signal addition operators. Moreover, Enoiu et
al. [133] investigated mutation-based test generation for PLC embedded software using
model checking. In their work, they designed six mutation operators for PLC embedded
software relying on commonly occurring faults in IEC 61131-3 software [280, 321]. Dif-
ferent from our approach, all these works target mutation testing at the model level, and
can only be applied to one specific type of software, e.g. Simulink. Our approach, on
the other hand, is based on source code, and can thus potentially apply to all kinds of
embedded system platforms.

5.8. CONCLUSION & FUTURE WORK
Physical computing systems come with their own set of challenges. This chapter focuses
on the challenge of testing these physical computing systems, with a particular focus on
assessing the quality of the tests that validate the interactions between the software and
the physical components. We zoom in on common mistakes that occur in these inter-
actions and propose a novel mutation testing approach with nine mutation operators
targeting these common interaction mistakes.

Our results have shown encouraging results in uncovering weaknesses in existing
tests. As such, our mutation testing approach enables to guide engineers to test sys-
tems more effectively and efficiently. More specifically, for our nine case study sys-
tems our mutation testing tool generated a total of 1036 mutants of which 41% were
not killed by the original test suite (and 1.2% of the overall mutants being equivalent
mutants). Adding tests or reinforcing existing tests made it possible to kill 94% of the
non-equivalent surviving mutants.

This chapter makes the following contributions:

• a generic mutation testing approach for physical computing systems;

• a mutation testing tool named MUTPHY working on the Raspberry Pi and Arduino
platforms;

• a preliminary experiment on nine physical computing systems2;

5

146 5. MUTATION TESTING FOR PHYSICAL COMPUTING

Future work. In the future, we aim to conduct additional case studies on more re-
alistic physical computing systems. Also, we would like to explore the complementarity
between traditional mutation operators and our newly designed, yet very specific muta-
tion operators. Finally, we also aim to explore the relationship between testability and
mutation score.

2All the tools, scripts and metadata for this experimental study are available in our GitHub repository [388].

6
MASSIVELY PARALLEL, HIGHLY

EFFICIENT, BUT WHAT ABOUT THE

TEST SUITE QUALITY? APPLYING

MUTATION TESTING TO GPU
PROGRAMS

Thanks to rapid advances in programmability and performance, GPUs have been widely
applied in High-Performance Computing (HPC) and safety-critical domains. As such,
quality assurance of GPU applications has gained increasing attention. This brings us
to mutation testing, a fault-based testing technique that assesses the test suite quality by
systematically introducing small artificial faults. It has been shown to perform well in
exposing faults. In this chapter, we investigate whether GPU programming can benefit
from mutation testing. In addition to conventional mutation operators, we propose nine
GPU-specific mutation operators based on the core syntax differences between CPU and
GPU programming. We conduct a preliminary study on six CUDA systems. The results
show that mutation testing can effectively evaluate the test quality of GPU programs: con-
ventional mutation operators can guide the engineers to write simple direct tests, while
GPU-specific mutation operators can lead to more intricate test cases which are better at
revealing GPU-specific weaknesses.

This chapter has been published in the IEEE International Conference on Software Testing, Verification and
Validation (ICST) 2020 [395].

147

6

148 6. APPLYING MUTATION TESTING TO GPU PROGRAMS

6.1. INTRODUCTION
A graphics processing unit (GPU) is a single-chip processor originally used to boost the
performance of video and graphics. The recent development of massive parallelism and
energy efficiency and the ease of programming using the CUDA [267] and OpenCL [259]
programming models have made GPUs attractive for High-Performance Computing (HPC),
which requires compute-intensive, highly parallel computation [134, 336]. Moreover,
GPUs are increasingly used in some safety-critical domains, such as medical science [332]
and automotive [225]. In both HPC and safety-critical domains, quality assurance of
GPU applications is an important issue [158, 303].

However, it is not easy to write a correct GPU program [226]. The essential elements
of GPU programs are kernels, which are functions executed on GPU cores. To efficiently
schedule instances of kernels on a GPU platform, a programmer needs to face the chal-
lenges in computation and memory access that do not appear in Central Processing Unit
(CPU) programs.

Regarding computation, a programmer tends to spend less effort on thread manage-
ment on the CPU platform than on the GPU platform [226]. To ensure high execution
efficiency, a CPU usually supports far fewer threads running in parallel than a GPU of
the same generation. Since the operating system needs to spend extra time on thread
scheduling when the number of threads triggered by an application exceeds the total
number of cores on the CPU. As a result, a CPU programmer may focus on the cor-
rectness and efficiency of a single thread, and leave the thread collaboration issues to
libraries (e.g., OpenMP) and third-party tools. In contrast, managing threads on GPUs is
challenging and rarely automated as a GPU often contains thousands of cores. Develop-
ment toolkits as CUDA require programmers to manage the threads explicitly.

With regard to memory access, the hardware-level facilities for memory, such as the
memory hierarchy, are typically transparent to programmers for the CPU. For instance,
a CPU programmer may reorder entries in an array without knowing or controlling the
movement of data in between the main memory and CPU cache. In contrast, a GPU plat-
form has a separate memory space which is isolated from the main memory of the host
computer. To ensure correctness and execution efficiency, GPU programmers have to
explicitly manage different types of memory including shared memory, global memory
and the memory of host computer [250].

Given the increasing demand for quality assurance of GPU applications as well as
the challenges in GPU programming, it becomes essential to understand to which ex-
tent a GPU program can be analysed and tested. This brings us to mutation testing, a
fault-based testing technique that measures the test effectiveness in terms of fault de-
tection [197?]. Mutation testing has been shown to perform well in exposing faults
compared to other test coverage criteria [144, 228, 244]. Also, mutants can act as a valid
substitute to real faults [50, 201].

In this chapter, we aim to enable mutation testing for GPU programming to investi-
gate if mutation testing can help in GPU program testing. To achieve this goal, we de-
velop a mutation testing tool named MUTGPU especially for GPU applications in the
CUDA programming model. Considering the differences between CPU and GPU pro-
gramming, we design nine new GPU-specific mutation operators in addition to conven-
tional mutation operators. We perform an empirical study involving six GPU projects

6.2. BACKGROUND

6

149

Figure 6.1: Comparison of CPU and GPU [267]

from the CUDA SDK [6]. To steer our experimental study, we propose the following re-
search questions :

RQ6.1 How frequently can GPU-specific mutation operators be applied, and how good is the existing
test suite at killing them?

RQ6.2 How effective are conventional mutation operators in evaluating the test suite of GPU pro-
grams?

RQ6.3 How effective are GPU-specific mutation operators in evaluating the test suite of GPU pro-
grams?

RQ6.4 How do GPU-specific mutation operators compare with conventional mutation operators in
terms of the improvement?

6.2. BACKGROUND

6.2.1. GPU COMPUTING
A graphics processing unit (GPU) was originally dedicated to providing a high-performance,
visually rich, interactive 3D experience [234]. With rapid advances of programmability
and performance, a GPU becomes a compelling platform for computationally demand-
ing tasks in various domains [283].

GPU computing, also known as general-purpose computing on the GPU (GPGPU), is
to use a GPU as a co-processor to accelerate CPUs for general-purpose scientific and
engineering computing [283]. Compared to the CPU, the GPU contains many more
transistors devoted to data processing rather than data caching and flow control (as
demonstrated in Figure 6.1) [267]. Thus, the GPU is especially well-suited for compute-
intensive, highly parallel computation.

Another important characteristic of GPUs is that the programmable units (a GPU
core) follow a “SPMD" programming model: single program, multiple data [283]. More
specifically, the GPU processes many elements (vertices) in parallel using the same pro-
gram, and each element is independent of the other elements.

6

150 6. APPLYING MUTATION TESTING TO GPU PROGRAMS

1 void sum(int n, float *a, float *b, float *c){
2 for (int i = 0; i < n; i++){
3 c[i] = a[i] + b[i];}}
4 int main (){
5 ...
6 int N = 1 < <20;
7 // Perform SUM on 1M elements
8 sum(N, a,b,c);
9 ...}

Listing 6.1: sum function in Standard C

So far, there are three major GPU programming models: OpenCL (Open Computing
Language), from the Khronos Group [259]; CUDA, from NVIDIA [267]; and C++ AMP,
from Microsoft [164]. CUDA, as a popular GPU platform and programming model, was
introduced by NVIDIA in November 2006. CUDA comes with a software environment
that enables developers to program in C/C++. Except for C/C++, CUDA also supports
Fortran, DirectCompute, OpenACC and Python.

6.2.2. EXAMPLE OF GPU PROGRAMMING
In this section, we are going to demonstrate the main concepts of GPU programming
along with a simple program in CUDA C1. This program is to sum two vectors (a and b)
into a third vector (c). In standard C, we can easily compute within a for loop shown as
Listing 6.1. In CUDA C, we can accomplish the same addition on a GPU by introducing
a device function. Here, we refer to the CPU and the system memory as the host and the
GPU and its memory as the device. As shown in Listing 6.2, we add __global__ to sum()
(Line 1 in Listing 6.2) in order to notify the compiler that this function should be com-
piled to run on a device instead of the host. Moreover, we need to determine how many
parallel copies of sum() function (named a kernel meaning a function that executes on
the device) to launch. A kernel is executed by a collection of thread blocks (called a grid),
and a thread block can be further split into threads (shown in Figure 6.2). The state-
ment sum<<<4096,256>>> (Line 13 in Listing 6.2) specifies to launch 1,048,576 parallel
threads (4096 blocks £ 256 threads per block) for function sum.

After we launch the kernel with 1M parallel threads, the CUDA runtime assign vary-
ing values to those threads by blockIdx.x*blockDim.x + threadIdx.x2 (Line 2 in Listing 6.2),
the first taking 0 and the last taking n-1. Thus, all the threads run the same instructions
but with different indices in parallel. Figure 6.3 presents the actual code being executed
in threads.

Last but not least, in order to call the kernel, we first need to load the values of the
two vectors (a and b) to the device (dev_a and dev_b) by invoking cudaMemcpy (Line
10 and 11 in Listing 6.2). The function cudaMemcpy, similar to memcpy in standard C,
controls the memory copy between the device and the host. After the execution of the
device function in the GPU, we then copy the output from the device (dev_c) to the host
(c) (Line 14 in Listing 6.2).

1CUDA C is standard C with some ornamentation to allow developers to specify which code should run on the
GPU and which should run on the CPU [311]

2Those are built-in variables in CUDA runtime that contains the value of thread index for whichever thread is
currently running the device code.

6.3. MOTIVATION

6

151

NeUQeO1

NeUQeO2

bORcN
(0,0)

bORcN
(1,0)

bORcN
(2,0)

bORcN
(0,1)

bORcN
(1,1)

bORcN
(2,1)

gULd1

bORcN
(0,0)

bORcN
(1,0)

bORcN
(0,2)

bORcN
(0,1)

bORcN
(1,1)

bORcN
(1,2)

gULd2
WKUead
(0,0)

WKUead
(1,0)

WKUead
(2,0)

bORcN (2,1)

WKUead
(3,0)

WKUead
(0,1)

WKUead
(1,1)

WKUead
(2,1)

WKUead
(3,1)

WKUead
(0,2)

WKUead
(1,2)

WKUead
(2,3)

WKUead
(3,3)

HRVW DeYLce

Figure 6.2: CUDA programming model [267]

6.3. MOTIVATION
From Section 6.2, we can see there are important differences in the programming models
of the CPU and the GPU. This raises the question of whether conventional mutation
operators for C/C++ are enough to represent bugs in GPU programming? We observe
that a test suite mutated with conventional operators may be insufficient: the GPU code
with certain issues can still easily pass the test suite.

The first example is the memory management in GPU. In GPU programming, we first
need to specify the number of parallel processors to launch in the device. In Listing 6.2,
we can see that 1,048,576 parallel threads are used for the kernel. In this example, the
size of our testing data is 220, the exact same size as the number of parallel threads; this
means that every thread can process one index of the vectors. Thereby, this test can eas-
ily pass. What if the testing data exceeds 220 (such as 225 shown in Listing 6.3)? For this
test case, the specific parallel threads are not enough to iterate and compute each index
individually. Therefore, the test in Listing 6.3 fails. This exposes a bug in the sum func-
tion: we have to modify the CUDA C code to allow certain threads to compute more than
one index of the vectors (see in Listing 6.4). For Listing 6.2, existing mutation operators
for C cannot target the problem related to parallel processor allocation in GPUs.

Another instance we observe is the thread management in the GPU. Different from
the CPU, GPU computing involves massive parallel operations via threads; the bugs in
thread management are hard to represent with conventional mutation operators. For
example, Listing 6.5 presents one example of indexing bugs that could occur in GPU
programs.

We would also like to mention atomic operations in GPU programming. When devel-

6

152 6. APPLYING MUTATION TESTING TO GPU PROGRAMS

__global__ void sum(...){

 int i = 0;

 if (i < n){

 c[i] = a[i] + b[i];

 }

}

__global__ void sum(...){

 int i = 1;

 if (i < n){

 c[i] = a[i] + b[i];

 }

}

__global__ void sum(...){

 int i = 2;

 if (i < n){

 c[i] = a[i] + b[i];

 }

}

__global__ void sum(...){

 int i = 3;

 if (i < n){

 c[i] = a[i] + b[i];

 }

}

Thread 0 Thread 1

Thread 2 Thread¬ 3

...

...

Block 0

Figure 6.3: Actual code in CUDA parallel threads

oping conventional single-threaded applications, there is no need for atomic operations.
However, for GPU applications which are multithreaded by default, we do need a way to
perform read-modify-write without being interrupted by another thread in certain con-
ditions, such as reduction. Atomic operation omissions are one common mistake that
happens in GPU programming, e.g., Listing 6.6.

To sum up, we do see a necessity to investigate mutation testing specifically for GPU
programming.

6.4. MUTATION OPERATORS FOR GPU PROGRAMMING

6.4.1. GPU-SPECIFIC MUTATION OPERATORS
Mutation operators are well-defined rules to specify the syntactic changes to generate
faulty versions (called mutants) [279]. They are the key to mutation testing, where good
mutation operators lead to effective test suites while poor mutation operators generate
many trivial and redundant mutants.

To design mutation operators, we usually follow two methodologies [121]: the first
is based on fault models, and the other is to analyse the syntax of the language being
mutated. In our study, we mainly follow the later guideline: we have defined GPU-
specific mutation operators based on the core syntax differences between CPU and GPU
programming (as discussed in Section 6.3). Meanwhile, we also consider the syntactic
changes in ways that programmers could make mistakes in GPU programming (the first

6.4. MUTATION OPERATORS FOR GPU PROGRAMMING

6

153

1 __global__ void sum(int n, float *a, float *b, float *c){
2 int i = blockIdx .x* blockDim .x + threadIdx .x;
3 if (i < n){
4 c[i] = a[i] + b[i];}}
5 int main (){
6 ...
7 int N = 1 < <20;
8 int *a, *b, *c; // memory in host
9 int *dev_a , *dev_b , * dev_c ; // memory in device

10 cudaMemcpy (dev_a , a, N, cudaMemcpyHostToDevice);
11 cudaMemcpy (dev_b , b, N, cudaMemcpyHostToDevice);
12 // Perform SUM on 1M elements
13 sum < < <4096 ,256 > > >(N, dev_a , dev_b , dev_c);
14 cudaMemcpy (c, dev_c , N, cudaMemcpyDeviceToHost);
15 // examine the correct answer in c
16 ...}

Listing 6.2: sum function in CUDA C

1 void test (){
2 ...
3 int N = 1<< 25 ;
4 int *a, *b, *c; // memory in host
5 int *dev_a , *dev_b , * dev_c ; // memory in device
6 cudaMemcpy (dev_a , a, N, cudaMemcpyHostToDevice);
7 cudaMemcpy (dev_b , b, N, cudaMemcpyHostToDevice);
8 sum < < <4096 ,256 > > >(N, dev_a , dev_b , dev_c);
9 cudaMemcpy (c, dev_c , N, cudaMemcpyDeviceToHost);

10 ...}

Listing 6.3: A test case for sum function (Listing 6.2)
Note: we highlight the different test data setting in yellow colour.

guideline). To verify that the mutation operators we have proposed represent the com-
mon mistakes in GPU programming, we have searched for them on StackOverflow with
the keyword “cuda" + issue name. For example, the keyword for the shared memory
issue is “cuda shared memory". After searching for “cuda shared memory”, we have ob-
tained 500 search results from StackOverflow sorted by relevance. We have analysed the
first 150 items. Among those, 48% are referring to bug issues.

We categorise the GPU-specific mutation operators according to the key syntactic
differences between CPU and GPU programming. In the following sections, we describe
the GPU-specific mutation operators we proposed by category.

MEMORY MANAGEMENT

Execution configuration As mentioned in Section 6.2.2, we need to specify the execu-
tion configuration for a kernel function. The execution configuration defines the dimen-
sion of the grid and blocks that will be used to execute the function on the device. To de-

1 __global__ void sum(int n, float *a, float *b, float *c){
2 int i = blockIdx .x* blockDim .x + threadIdx .x;

3 while (i < n) {
4 c[i] = a[i] + b[i];
5 i += blockDim.x * gridDim.x; }}

Listing 6.4: Modified sum function in CUDA C
Note: we highlight the modified parts in yellow colour.

6

154 6. APPLYING MUTATION TESTING TO GPU PROGRAMS

1 __global__ void sum(int n, float *a, float *b, float *c){
2 int i = threadIdx.x*blockDim.x + blockIdx.x ;
3 while (i < n)}{
4 c[i] = a[i] + b[i];
5 i += blockDim .x * gridDim .x; }}

Listing 6.5: sum function in CUDA C with indexing bugs
Note: we highlight the faulty parts in yellow colour.

1 __global__ void histogram (unsigned char *buffer ,
2 long size , unsigned int * histo){
3 int i = blockIdx .x* blockDim .x + threadIdx .x;
4 while (i < n){

5 histo[buffer[i]] += 1; i += blockDim .x * gridDim .x;}}

Listing 6.6: histogram in CUDA C with atomic operation omission
Note: we highlight the faulty parts in yellow colour.

termine the number of parallel processors allocated for the kernel, many factors should
be taken into consideration, for instance, the maximum size of the data and the limita-
tion of the GPU device. For the execution configuration is unique in GPU programming,
we propose the following three mutation operators to cover this aspect:

• alloc_swap: to replace the number of threads with the number of blocks in parallel
processor allocations (and vice versa). The same bug was posted in SO29158775 [33].

add < < <4096 ,256 > > >(N, a, b, c); // original
! add < < <256 ,4096 > > >(N, a, b, c); // mutant

Listing 6.7: Example of alloc_swap mutator

• alloc_increment: to increase the number of parallel processors (in both threads
and blocks) allocated by one

add < < <4096 ,256 > > >(N, a, b, c); // original
! add < < <4096+1 ,256 > > >(N, a, b, c); // mutant

Listing 6.8: Example of alloc_increment mutator

• alloc_decrement: to decrease the number of parallel processors (in both threads
and blocks) allocated by one

add < < <4096 ,256 > > >(N, a, b, c); // original
! add < < <4096 -1 ,256 > > >(N, a, b, c); // mutant

Listing 6.9: Example of alloc_decrement mutator

Shared memory The shared memory in GPU programming provides a means by which
threads within a block can communicate and collaborate on computations [267]. To
declare the variable in shared memory, we use the __shared__ memory space specifier in
CUDA C, for instance, __shared__ float share[64];. The shared memory management is
the main cause of data races and bank conflicts. The mutation operator share_removal is
introduced to represent such bugs in GPU programs. There are a great deal of questions

6.4. MUTATION OPERATORS FOR GPU PROGRAMMING

6

155

posted on StackOverflow addressing the confusion about the shared memory in GPU
programming, e.g., SO25255699 [32] and SO9488590 [36].

• share_removal: to remove the shared memory space specifier in variable declara-
tions

__shared__ float cache [N]; // original
! float cache [N]; // mutant

Listing 6.10: Example of share_removal mutator

THREAD MANAGEMENT

GPU indexing GPU programming introduces a new indexing mechanism to iterate the
data and threads using built-in variables such as threadIdx.x and blockIdx.x (as men-
tioned in Section 6.3). While in conventional imperative programming, we use the loop
statement (e.g., for and while) to iterate the data and threads. Since the indexing scheme
is quite different from serial code, there are numerous questions posted on StackOver-
flow addressing the confusion about GPU indexing, such as SO9859456 [37], SO21677559 [31]
and SO33159171 [35]. Therefore, we design three mutation operators address the index-
ing issue:

• gpu_index_replacement: to replace the thread indexing variable (threadIdx) with
the block indexing variable (blockIdx) and vice versa

int tid = blockIdx .x; // original
! int tid = threadIdx .x; // mutant

Listing 6.11: Example of gpu_index_replacement mutator

• gpu_index_increment: to increase the indexing variables (threadIdx and blockIdx)
by one

int tid = blockIdx .x; // original
! int tid = blockIdx .x+1; // mutant

Listing 6.12: Example of gpu_index_increment mutator

• gpu_index_decrement: to decrease the indexing variables (threadIdx and blockIdx)
by one

int tid = blockIdx .x; // original
! int tid = blockIdx .x -1; // mutant

Listing 6.13: Example of gpu_index_decrement mutator

Synchronisation functions The synchronisation function, also called barrier, is used
to coordinate communications between threads in a specific block (e.g., __syncthreads()
function in CUDA C). Many data races and deadlocks are caused by the incorrect bar-
rier placement. We propose sync_removal to mimic the mistakes of the incorrect bar-
rier placement. The omission or misplacement of the synchronisation function are very
common in GPU code, e.g., SO29233426 [34].

6

156 6. APPLYING MUTATION TESTING TO GPU PROGRAMS

• sync_removal: to remove the synchronisation function call (e.g. __syncthreads())

int i = blockDim .x/2;
while (i != 0) {

if (cIndex < i)
cache [cIndex] += cache [cIndex + i];

__syncthreads (); // original
! // __syncthreads (); // mutant

i /= 2;}

Listing 6.14: Example of sync_removal mutator

ATOMIC OPERATIONS

Atomic operations are unavoidable in multithreaded applications in the sense that they
are guaranteed to be performed without interference from other threads. In other words,
no other thread can access this address until the operation is complete. However, if the
programmer does not pay enough attention, he or she is very likely to omit the atomic
operations in GPU programming, for example, SO14057678 [30].

• atom_removal: to remove the atomic functions (e.g., atomicAdd()) with non-atomic
operations

while (i < size) {
atomicAdd (&(histo [buffer [i]]) ,1); // original

! histo [buffer [i]]) += 1; // mutant
i += stride ;}

Listing 6.15: Example of atom_removal mutator

6.4.2. CONVENTIONAL MUTATION OPERATORS
CUDA C is an extension of standard C [267], therefore, conventional mutation operators
for C also apply to CUDA C. Since the existing C mutation tools, such as Mull [122], can-
not fully parse the grammar of CUDA C, we have to define the grammar of CUDA C first.
So far, we have implemented five mutation operators which are most widely adopted
in mutation testing, i.e., conditional boundary replacement, negate conditional replace-
ment, math replacement, increment replacement and logical replacement.

6.4.3. GPU-SPECIFIC V.S. CONVENTIONAL MUTATION OPERATORS
The design principle of CUDA C/C++ is based on the traditional C/C++ syntax, which
makes it easy to learn and use for developers. Although our newly proposed GPU-specific
mutation operators seem to be subsumed by the existing mutation operators in terms of
syntax, they are semantically different. Take gpu_index_replacement from GPU-specific
mutation operators and array_reference from conventional mutation operators for ex-
ample. The operator gpu_index_replacement replaces the thread indexing variable (threa-
dIdx) with the block indexing variable (blockIdx). The thread/block indexing variable on
the GPU is not equivalent as the array variable on the CPU. The thread/block indexing
variable is used to access the parallel processors on the GPU, while array_reference vari-
able is used to access the memory blocks on the CPU. One thing to notice here is that
the mutants generated by GPU-specific mutation operators are totally different from the

6.5. TOOL IMPLEMENTATION

6

157

Table 6.1: Summary of mutation operators

category operator definition

C conditional_boundary_replacement replace the relational operators <, ∑, >, ∏ with their boundary counterpart (according to
PIT [103])

increment_replacement replace increments with decrements and vice versa
logical_replacement replace logical operator AND (&&) with OR (||) and vice versa.
math_replacement replace binary arithmetic operations with another operation (according to PIT [103])
negate_conditional_replacement replace the relational operators with another operation (according to PIT [103])

GPU alloc_decrement decrease the number of parallel processors (in both threads and blocks) allocated by one
alloc_increment increase the number of parallel processors (in both threads and blocks) allocated by one
alloc_swap replace the number of threads with the number of blocks in parallel processor allocations (and

vice versa)
atom_removal remove the atomic functions (e.g. atomicAdd()) with non-atomic operations
gpu_index_decrement decrease the indexing variables (threadIdx and blockIdx) by one
gpu_index_increment increase the indexing variables (threadIdx and blockIdx) by one
gpu_index_replacement replace the thread indexing variable (threadIdx) with the block indexing one (blockIdx) and vice

versa
share_removal remove the shared memory space specifier in variable declarations
sync_removal remove the synchronisation function call (e.g. __syncthreads())

conventional operators; this means there is no overlap between those two sets of mu-
tants.

To sum up, we have designed nine mutation operators (summarised in Table 6.1) to
replicate common errors in GPU programming. Meanwhile, we have also implemented
five conventional mutation operators that can be applied to CUDA C programs (also
included in Table 6.1).

6.5. TOOL IMPLEMENTATION

As mentioned earlier in Section 6.2, there are three major GPU programming models,
i.e., OpenCL, CUDA and C++ AMP. In this chapter, we select CUDA as the target model
to implement the aforementioned mutation operators.

To evaluate our approach, we have implemented a prototype tool (coined MUTGPU)
in Python to apply mutation testing in GPU programs. Figure 6.4 presents an overview
of the architecture of MUTGPU [389]. MUTGPU consists of two components, i.e., the
mutation engine and the test executor. MUTGPU takes the program and its test suite
as input. First, the mutation engine analyses the source code and marks all possible
mutation points, and then the mutation generator produces all the mutants according
to mutation operators. After that, the program and generated mutants together with the
test suite go to the test executor, where the mutation testing is performed: each mutant
is executed against the test suite one by one. Finally, MUTGPU prints out the detailed
mutant killable results.

The main task of the code analyser is to analyse the test dependencies and parse the
source code of the program for the mutation generator. We have adopted Pyparsing [248]
as the code analyser to parse the CUDA C code. Pyparsing is a pure-Python class library
that constructs recursive-descent parsers with ease. The mutation generator contains all
the mutation operators and the details of the mutants including the mutation location
(line number) and the mutation operator type.

6

158 6. APPLYING MUTATION TESTING TO GPU PROGRAMS

PXWaQWV

cRde
aQaO\VeU

PXWaQW
geQeUaWRU

SURgUaP

PXWaWiRQ eQgiQe

WeVWV

 WeVW
e[ecXWRU

iQSXW RXWSXW

PXWaQW
NiOOabOe
UeVXOWV

MXWGPU

1

2

3 4

Figure 6.4: Overview of MUTGPU architecture and workflow

6.6. EMPIRICAL EVALUATION
To assess the efficacy of our mutation testing approach, we conducted an experimental
study based on the CUDA programming model. The main purpose of this study is to in-
vestigate whether GPU programming can benefit from mutation testing, so we proposed
the following research questions to steer our experimental study:

• RQ6.1: How frequently can GPU-specific mutation operators be applied, and how good is the
existing test suite at killing them?

• RQ6.2: How effective are conventional mutation operators in evaluating the test suite of GPU
programs?

• RQ6.3: How effective are GPU-specific mutation operators in evaluating the test suite of GPU
programs?

• RQ6.4: How do GPU-specific mutation operators compare with conventional mutation op-
erators in terms of the improvement?

6.6.1. SUBJECT SYSTEMS
We select six GPU benchmark projects from the CUDA SDK [6]. All these benchmark
projects are widely used in the research domain [78, 82, 227]. Table 6.2 summarises the
main characteristics of the selected projects. All systems are written in CUDA C, and
contain a set of test cases.

We perform the experiment on two different NVIDIA graphic cards (GeForce MX150
& GTX 960) with two releases of CUDA toolkit (9.0 & 9.1) to minimise the threat caused
by errors residing in hardware and CUDA toolkits.

6.6.2. EXPERIMENTAL SETUP
To answer RQ6.1, we investigate the mutant results for each GPU-specific mutation op-
erator we proposed in detail. More specifically, we evaluate the frequency of each muta-

6.7. RESULTS

6

159

Table 6.2: Subject systems

Project File
LOC #Mutants

Source Test hCOV C GPU

MonteCarloMultiGPU MonteCarlo_kernel.cu 231
359 100

71 59
MonteCarlo_reduction.cuh 71 14 2

convolutionFFT2D convolutionFFT2D.cu 226
509 100

40 36
convolutionFFT2D.cuh 463 250 64

histogram histogram64.cu 219
141 100

82 96
Histogram256.cu 165 48 81

mergeSort mergeSort.cu 636 95 100 264 300
transpose transpose.cu 349 174 100 180 319
scan scan.cu 290 116 100 90 70

total 2650 1394 100 1039 1027

Note: Column “LOC" standing for the line of code is measured by
sloccount[363]. Column “hCOV" indicates the statement coverage for the host
code. For device code, coverage analysis is a wrong approach as already dis-
cussed by the Nvidia community [4].

tion operator based on the number of the generated mutants and the mutation score.
For RQ6.2 and RQ6.3, we determine the effectiveness of the mutation operators in

assessing test quality of GPU programs based on non-equivalent surviving mutants. Be-
cause non-equivalent surviving mutants are crucial to calculate the mutation score, and
by investigating non-equivalent surviving mutants, we can see whether those mutants
are due to inadequate test suites or not. We have implemented five conventional and
nine GPU-specific mutation operators in our tool MUTGPU. We apply all the mutation
operators to the six subject systems and manually analyse the non-equivalent surviving
mutants. We identify the equivalent mutants by hand.

To compare the conventional mutation operators with GPU-specific ones (RQ6.4),
we are interested in what kind of enhancements the GPU-specific mutation operators
can bring to the conventional mutation operators. In other words, we would like to in-
vestigate whether there exists some bugs or issues that cannot be detected by the con-
ventional mutation operators, but can be detected by GPU-specific mutation operators.
Therefore, we first try to manually engineer new test cases to kill all the possible con-
ventional mutants to obtain a C-sufficient test suite for each system. Then, we apply
GPU-specific mutation operators to the C-sufficient test suites to see if there are non-
equivalent GPU mutants survived. The last step is to manually analyse the remaining
GPU mutants that cannot be detected by the C-sufficient test suites.

6.7. RESULTS
RQ6.1: FREQUENCY OF GPU-SPECIFIC MUTATION OPERATORS & MUTATION SCORES

We sum up the mutant results for each mutation operator in Table 6.3. From Table 6.3,
we can observe that operator gpu_index_replacement generates the most mutants (411)
for GPU programs, followed by operator gpu_index_decrement (210) and gpu_index_increment
(210). This indicates that the GPU indexing operations are commonly used in GPU pro-
gramming. Thus, designing specific mutation operators for GPU indexing seems nec-

6

160 6. APPLYING MUTATION TESTING TO GPU PROGRAMS

Table 6.3: Mutant results for each mutation operator

category operator #covered #killed #equiv. #survived #total MS

C conditional_boundary_replacement 114 60 45 58 118 0.822
increment_replacement 12 9 0 3 12 0.75
logical_replacement 5 2 3 3 5 1
math_replacement 714 572 86 172 744 0.869
negate_conditional_replacement 156 130 6 30 160 0.844
subtotal 1001 773 140 266 1039 0.86

GPU alloc_decrement 46 38 0 12 50 0.76
alloc_increment 46 21 0 29 50 0.438
alloc_swap 46 31 3 19 50 0.633
atom_removal 1 1 0 0 1 1
gpu_index_decrement 204 181 0 29 210 0.862
gpu_index_increment 204 173 0 37 210 0.824
gpu_index_replacement 403 340 0 71 411 0.827
share_removal 20 17 0 3 20 0.85
sync_removal 25 19 1 6 25 0.792
subtotal 995 821 4 206 1027 0.803

Note: Column “#equiv." represents the number of the equivalent mutants. Column “MS" rep-
resents the mutation score which is calculated by the number of killed mutants divided by the
number of non-equivalent mutants (the same in the following tables).

essary. The operator atom_removal only produces one mutant. We assume the reason
behind the low mutant number (=1) is because the selected subject systems we selected
do not contain many atomic operations.

From the aspect of the mutation score, except operator atom_removal whose muta-
tion score is 1, the rest ranges from 0.438 to 0.862. This means that not all the mutants
generated by the GPU-specific mutation operators can be detected by the existing test
suites. There is still space for improvement in the existing test suites. The high muta-
tion score for operator atom_removal is due to its low mutant number. This observation
indicates that all GPU specific mutation operators we designed are useful in GPU pro-
gramming to guide the engineers to write better tests.

The GPU-specific mutation operators we propose can be frequently applied in GPU
programming. Furthermore, the mutation score obtained from applying these muta-
tion operators ranges from 0.438 to 1.0.

RQ6.2: CONVENTIONAL MUTATION OPERATORS

Table 6.4 summarises the mutant results from running both C and GPU mutants against
existing test suites. Overall, there are 1039 C mutants generated in total (as shown in
Table 6.4). 96.3% mutants are covered by the existing test suites (meaning the line from
which the mutant is generated is covered by the test suite), while 74.4% mutants (86.0%
non-equivalent mutants) are killed. We can see that the mutation score (0.860) is lower
than the mutation coverage (0.963), which means some mutants that are covered by the
tests can still survive. Looking at the existing test suites, we found that most tests from
the six projects do not target the unit-level: the main design of the test suites is to in-
voke a series of functions in turn and examine the final results in the end. Therefore,

6.7. RESULTS

6

161

Table 6.4: Mutant results

Project File
C Mutants GPU Mutants

#total #covered #killed #equiv. MS #total #covered #killed #equiv. MS

MonteCarloMultiGPU MonteCarlo_kernel.cu 71 65 44 7 0.688 59 59 23 0 0.390
MonteCarlo_reduction.cuh 14 14 13 1 1.000 2 2 0 1 0.000

convolutionFFT2D convolutionFFT2D.cu 40 40 40 0 1.000 36 36 27 0 0.750
convolutionFFT2D.cuh 250 249 213 34 0.986 64 64 61 0 0.953

histogram histogram64.cu 82 77 70 6 0.921 96 96 81 0 0.844
Histogram256.cu 48 48 41 5 0.953 81 81 68 0 0.840

mergeSort mergeSort.cu 264 244 180 33 0.779 300 288 265 0 0.883
transpose transpose.cu 180 174 99 43 0.723 319 299 231 0 0.724
scan scan.cu 90 90 73 11 0.924 70 70 65 3 0.970

total 1039 1001 773 140 0.860 1027 995 821 4 0.803

Note: Column “#equiv." represents the number of the equivalent mutants. Column “MS" represents
the mutation score which is calculated by the number of killed mutants divided by the number of non-
equivalent mutants (the same in the following tables).

1 for (int i=0; i< TILE_DIM ; i+= BLOCK_ROWS){
2 if (xIndex < height && yIndex < width){
3 odata [index]= tile[threadIdx .y][threadIdx .x];}}

Listing 6.16: Bug example of an equivalent mutant (in transpose.cu)

it is very likely that a small change in the program (a mutant) do not propagate to the
outputs (fault masking [162]). Moreover, test directness, which measures the extent to
which the production code is tested directly, plays an important role in mutation testing
(as mentioned in Chapter 4). However, there are few direct tests in the existing test suite
to assess the difference between the original and the mutated programs; this causes a
small number of mutants to not be detected by the existing test suites. The comparison
of coverage and mutation score indicates that the mutation score is a stronger indicator
of test suite quality than test coverage.

Speaking of equivalent mutants, the conventional mutation operators generate 140
equivalent mutants (13.5%) out of 1039 mutants as displayed in Table 6.4. Furthermore,
from Table 6.3 where we sum up the mutant results for each mutation operator, we
can see that over 50% of mutants (61.4%) are generated by operator math_replacement,
followed by operator conditional_boundary_replacement (32.1%). Most of the equiva-
lent mutants produced by math_replacement are because one operand in the math op-
eration is zero, such as threadIdx.x + 0, thus the replacement of the math operators,
e.g., from + to °, does not influence the result. The equivalent mutants from condi-
tional_boundary_replacement are owing to the fact that the boundary conditions (the
equivalent condition, i.e., =) cannot be reached or satisfied. Also, there are a few equiv-
alent mutants guiding us to detect the bugs in the systems. Listing 6.16 presents an ex-
ample of a bug caught by the equivalent mutants. The mutant which replaces < to ∑
in Line 1 is equivalent to the original program since the variable i does not affect the
result of the loop. This equivalency turns out to be a potential bug in the program as
variable i is useless in the loop. The cause for the bug is that there is a similar loop in the
previous function (shown in Listing 6.17). Thus, the bug shown in Listing 6.16 might be
due to copy-pasting the previous statements but omitting the modification. This finding
supports that GPU programming can benefit from mutation testing.

6

162 6. APPLYING MUTATION TESTING TO GPU PROGRAMS

1 for (int i=0; i< TILE_DIM ; i+= BLOCK_ROWS){
2 odata [index_out +i] = idata [index_in +i* width];}

Listing 6.17: Cause of bug example in Listing 6.16

Moreover, to further understand the effectiveness of the mutation operators in as-
sessing test quality, we need to manually analyse the 126 surviving non-equivalent mu-
tants to see whether these surviving non-equivalent mutants are due to inadequate test
suites. Compared to conventional CPU programs, testing GPU code is more challenging.
Only a small number of mutants (34 out of 126) can simply be killed by improving and
adding tests. To detect the remaining mutants, we first need to refactor the existing code,
and then add tests. The reason for a number of the mutants that need to be refactored is
because many functions cannot be directly accessed from the test suites.

According to the CUDA programming model (shown in Figure 6.2), there are two
parts in the GPU programs: the host (the CPU and the system memory) and the de-
vice (the GPU and its memory). The tests are mainly located in the host which invokes
a function in the device/host and examines the result. Therefore, if the function is ex-
ecuted on the device and callable from the device only, it is impossible to access the
function directly from the host. This exception is the function specified by __device__.
The workaround is to wrap __device__ functions with a __global__ function which can
be callable from the host. Other function specifiers, e.g., static and inline, also prevent
the tests to access those functions from a different file. Since the access to static and
inline functions is restricted to the file where they are declared. To test static and inline
functions, we have to remove the static and inline specifiers to allow the access from a
separate test file.

By modifying the function accessibility for the tests and adding direct tests, we can
kill another 58 mutants. However, some mutants generated are located in intermedi-
ate variables which do not propagate to the output. These are much harder to detect:
they usually require to split the method into smaller portions, or refactor the method to
non-void. This might considerably alter the structure of the systems, and also affect the
mutation score. Therefore, in this study, we leave this type of “stubborn" mutants [373]
aside. Except for “stubborn" mutants, to kill a conventional mutant in a GPU program,
adding one direct test without carefully choosing test input can work well which we can
achieve it within 1 min. Finally, we can achieve 0.962 mutation score by improving the
test quality, which indicates the conventional mutation operators can effectively evalu-
ate the existing test quality in the context of GPU programming.

GPU programming can benefit from the conventional mutation operators which mainly
guide the engineers to write direct tests for GPU programs. The average time to engi-
neer a test case to kill a mutant is within 1 min.

RQ6.3: GPU-SPECIFIC MUTATION OPERATORS

From Table 6.4, we can see that there are 1027 mutants generated by GPU-specific muta-
tion operators, slightly less than C mutants. Among all the GPU mutants, 96.9% mutants
are covered by the existing test suites. The overall mutation score is 0.803. The same ob-
servation holds for GPU mutants as for CPU mutants: the mutation score is higher than

6.7. RESULTS

6

163

1 if (tid == 0){
2 beta = 0; beta2 = 0;
3 for (int i = 0; i < blockDim .x; i += VEC) {
4 beta += sum[i]; beta2 += sum2[i];}
5 __TOptionValue t = {beta , beta2 };
6 * d_CallValue = t;}
7 cg :: sync(cta);

Listing 6.18: Bug example of an equivalent mutant (MonteCarlo_reduction.cuh)

the coverage. As we mentioned in Section 6.7, the majority of the tests only examine the
final outputs after a series of function calls. Therefore, although a number of mutants are
covered by the test suites, their changes do not propagate to the final outputs. This also
shows the advantage of the mutation testing over test coverage in evaluating test quality.

In terms of equivalent mutants, GPU specific mutation operators only generate four
equivalent mutants. Three are from operator alloc_swap, which are all located in the
execution configuration for a kernel function call (__global__ function call). The mu-
tants generated by alloc_swap are due to the number of threads being the same as the
number of blocks in parallel processor allocations. The last equivalent mutant is gen-
erated by operator sync_removal. This mutant is similar to Listing 6.16 which indicates
the presence of a potential bug (presented in Listing 6.18). The main task of Listing 6.18
is to produce a smaller array of the sum result by reduction. The code fragment in List-
ing 6.18 does not contain write operations to the shared array sum and sum2, thereby,
there is no need for a synchronisation function (cg::sync(cta)) in the end to guarantee
that all of those writes to the shared arrays complete before anyone tries to read from
the buffers. The synchronisation function (cg::sync(cta)) in Listing 6.18 is not necessary.
This also confirms that misuses of the synchronisation functions in GPU programming
are quite common, and the operator sync_removal can well represent common errors
in GPU programming. Looking into the surviving GPU mutants, a large number of mu-
tants (131) can easily be detected by modifying the function accessibility (e.g., remove
static specifier) and adding direct tests as mentioned in Section 6.7. To kill the remain-
ing non-equivalent mutants is more challenging: in addition to examining the expected
result after the function call, more factors should be taken into consideration, such as
the execution sequence, the size of the test input and the times of test execution. For
instance, to detect the mutants from operator sync_removal, it usually requires multiple
test executions (> 10 times), as the execution order of the code in GPU cores is undeter-
mined. Although, we assume that GPU cores run the parallel program at the same time,
there exist some latencies in different GPU cores. For instance, Thread 1 is executed be-
fore Thread 2 in one execution, while Thread 2 is executed before Thread 1 in another
execution. Thus, data races do not occur every time. Another example is to kill the mu-
tant generated from a __global__ function. It is very likely to encounter illegal memory
access if the test input size is inappropriate. To kill a GPU mutant, it usually requires
us to understand the program context very well and choose more than one specific test
input to kill a mutant; this could take up to hours to kill a GPU mutant. Thus, those tests
designed to kill GPU mutants can better reveal GPU-specific weakness.

However, we found that not all the non-equivalent surviving mutants can be killed
by adding test cases. There are 22 mutants not affecting the result of the kernel functions
but the GPU performance. The GPU performance means the execution time by GPUs.

6

164 6. APPLYING MUTATION TESTING TO GPU PROGRAMS

Table 6.5: Mutant results (C-sufficient test suites)

Project File
C Mutants GPU Mutants

t#otal #covered #killed #equiv. MS #total #covered #killed #equiv. MS

MonteCarloMultiGPU MonteCarlo_kernel.cu 71 71 61 7 0.953 59 59 49 0 0.831
MonteCarlo_reduction.cuh 14 14 13 1 1.000 2 2 0 1 0.000

convolutionFFT2D convolutionFFT2D.cu 40 40 40 0 1.000 36 36 27 0 0.750
convolutionFFT2D.cuh 250 249 216 34 1.000 64 64 61 0 0.953

histogram histogram64.cu 82 77 76 6 1.000 96 96 82 0 0.854
Histogram256.cu 48 48 42 5 0.977 81 81 69 0 0.852

mergeSort mergeSort.cu 264 264 213 33 0.922 300 300 280 0 0.933
transpose transpose.cu 180 180 126 43 0.920 319 319 298 0 0.934
scan scan.cu 90 90 78 11 0.987 70 70 65 3 0.970

total 1039 1033 865 140 0.962 1027 1027 931 4 0.910

Note: Column “#equiv." represents the number of the equivalent mutants. Column “MS" represents
the mutation score which is calculated by the number of killed mutants divided by the number of non-
equivalent mutants (the same in the following tables).

For example, one mutant generated by alloc_increment modifies the number of threads
in parallel processor allocations from 256 to (256-1). But the modifications do not influ-
ence the function output since the function already takes care of the boundary condition
when the test input exceeds the number of parallel threads (just as in Listing 6.4). Also,
the performance difference caused by the allocation decrement (-1) is too small to be
sensed by any test. The performance difference is unique to GPU programming since
the standard CPU programs do not use GPUs as co-processors. We suggest considering
these mutants that only influence the performance at a small scale without output mod-
ification as equivalent mutants in the context of GPU programming. Another option to
void such “equivalent" mutants generated from GPU programming could be using per-
formance requirement to be part of the definition of a test case passing or failing.

GPU-specific mutation operators can effectively evaluate the test quality in the con-
text of GPU programming. To kill the GPU mutants, many factors should be taken into
consideration, such as test directness, the program context, the execution sequence
and the test input size. It takes up to hours to kill a GPU mutant.

RQ6.4: CONVENTIONAL VS. GPU-SPECIFIC

In this section, we are going to shed light on the comparison of the conventional and
GPU-specific mutation operators we proposed. As mentioned earlier, we are interested
in what kind of improvements the GPU-specific mutation operators can bring to the con-
ventional mutation operators. Thereby, we use C-sufficient test suites (100% mutation
coverage for C mutants) as the base to apply mutation testing on the subject systems. Ta-
ble 6.5 displays the mutant results based on the C-sufficient test suites. We can see that
C-sufficient test suites have a high average mutation score using conventional mutation
operators compared to GPU-specific ones; this is what we expect. Otherwise, GPU mu-
tants are subsumed by C mutants, i.e., if the test suite achieve 100% mutation coverage
on C mutants, it also achieves 100% mutation coverage on GPU mutants.

From Table 6.5, we can see that with an increase in mutation score with conven-
tional mutation operators, the mutation score of GPU-specific mutation operators also

6.7. RESULTS

6

165

1 __global__ void padKernel_kernel (float *d_Dst , float *d_Src , int fftH , int
fftW , int kernelH ,int kernelW , int kernelY , int kernelX){

2 int y = blockDim .y * blockIdx .y + threadIdx .y;
3 int x = blockDim .x * blockIdx .x + threadIdx .x;
4 if (y < kernelH && x < kernelW){
5 int ky = y - kernelY ;
6 if (ky < 0){
7 ky += fftH ;}
8 int kx = x - kernelX ;
9 if (kx < 0){

10 kx += fftW ;}
11 d_Dst [ky*fftW+kx] = LOAD_FLOAT (y* kernelW +x);}}

Listing 6.19: Example of a surviving GPU mutant (convolutionFFT2D.cuh)

1 void test_padKernel_kernel (){
2 int N = 64*64;
3 float *d_Dst ,* d_Src ;
4 float h_Dst [N], h_Src [N], h_expected [N];
5 for(int i=0;i<N;i++){
6 h_Src [i]=i;
7 h_expected [i]=0;}
8 h_expected [3966]=1.0;
9 ...

10 cudaMalloc ((void **)&d_Dst , sizeof (float)*N);
11 cudaMalloc ((void **)&d_Src , sizeof (float)*N);
12 cudaMemcpy (d_Src , h_Src , N* sizeof (float), cudaMemcpyHostToDevice);
13 cudaMemset (d_Dst ,0,N* sizeof (float));
14 dim3 threads (8,8);

15 ! dim3 threads (32,8);
16 dim3 grid(iDivUp (3, threads .x), iDivUp (3, threads .y));
17 padKernel_kernel <<<grid ,threads >>>(d_Dst ,d_Src ,64 ,64 , 1,1,1,1);

18 ! padKernel_kernel <<<grid ,threads >>>(d_Dst ,d_Src ,64 ,64 , 3,3,3,3);
19 cudaMemcpy (h_Dst , d_Dst , N* sizeof (float), cudaMemcpyDeviceToHost);
20 bool testFlag = true;
21 for(int i=0;i<N;i++){
22 if(h_expected [i]!= h_Dst [i]){
23 testFlag = false ;}}
24 ...}

Listing 6.20: Direct test and its improved version for Listing 6.19
Note: we highlight the improved parts in yellow colour.

increases. This is mainly due to the design of the existing test suites, that do not target
the unit testing level (mentioned in Section 6.7). We also observe a lack of direct tests
for each function in the existing test suites. Thus, when we engineer new tests to kill
the C mutants, we mainly concentrate on designing direct tests (as we discussed in Sec-
tion 6.7). When we target a C mutant, the GPU mutant(s) located in the same line or the
same function unit is also under investigation. Once the change(s) of the GPU mutant(s)
in the same line or the same function unit can be observed by the direct test designed
for the C mutant, the GPU mutant(s) can typically be killed at the same time.

Considering the remaining GPU mutants that are not detected by the C-sufficient
test suites, the majority requires more delicate and complex test cases to observe the
differences. Take a surviving GPU mutant in File convolutionFFT2D.cuh (shown in List-
ing 6.19) for example. The function padKernel_kernel aims to position the center of the
convolution kernel at (0, 0) of the image which makes use of 2D GPU indexing.

All the mutants generated in Line 2 are detailed in Table 6.6. In order to kill the C
mutant (MID = 0) in Line 2, we add a direct test (shown in Listing 6.20) for function pad-

6

166 6. APPLYING MUTATION TESTING TO GPU PROGRAMS

Table 6.6: Mutant details for Listing 6.19 in Line 2

MID operator details category existing c-sufficient
0 math_rep. / c survived killed
1 gpu_index_rep. threadIdx.y gpu killed killed
2 gpu_index_rep. blockIdx.x gpu survived survived
3 gpu_index_inc. (blockIdx.y+1) gpu killed killed
4 gpu_index_dec. (blockIdx.y-1) gpu killed killed
5 math_rep. - c killed killed
6 gpu_index_rep. blockIdx.y gpu killed killed
7 gpu_index_rep. threadIdx.x gpu killed killed
8 gpu_index_inc. (threadIdx.y+1) gpu killed killed
9 gpu_index_dec. (threadIdx.y-1) gpu survived survived

Kernel_kernel. However, the newly added direct test cannot detect the two GPU mutants
with MID = 2 and MID = 9. Upon investigation, we found in the execution configura-
tion for function padKernel_kernel, the numbers of blocks in the two dimensions are
the same, i.e., gridDim.x = gridDim.y = 1 (see Line 14). Also, the condition in Line 4 of
Listing 6.19 restricts the larger indexes of parallel threads for computation. Therefore,
adding the direct tests cannot detect the difference of replacing blockIdx.y to blockIdx.x.
To detect Mutant 2, we need to modify the numbers of blocks in the two dimensions to
different values, e.g., set gridDim.x = 4 and gridDim.y = 1 (see Line 15). Moreover, we
need to set the values of kernelH and kernelW (see Line 17&18) big enough so that the
difference of the value y can affect the output of d_Dst array.

Together with this example, we can see that adding direct tests can kill most C mu-
tants, but not all the GPU mutants. The remaining GPU mutants are more challenging to
be killed as their differences with the original program are more subtle to tell. Only given
test inputs with specific values and execution settings, these GPU mutants can be de-
tected. This shows that the outputs of the GPU program are easily affected by test inputs
and execution configurations. Thus, the corresponding test cases designed according to
these types of GPU mutants are of higher quality and can detect more potential GPU-
specific bugs in the systems. Therefore, it requires more effort to design delicate tests to
kill a GPU mutants than the conventional C mutants.

Compared to conventional mutation operators, GPU-specific ones are better at guid-
ing the engineers to design more delicate tests to detect the subtle differences in GPU
programming. The efforts required to kill GPU mutants are higher than the conven-
tional.

6.8. THREATS TO VALIDITY
External validity: First, our results are based on the CUDA programming model; the re-
sults might be different when using other GPU programming models. Second, concern-
ing the subject selection, we chose six GPU projects in total to evaluate our approach.
All the projects are benchmark projects from the CUDA SDK [6], and are widely used
in the research domain; this can minimise the threats caused by subjects. Moreover,
there might exist errors in the GPU hardware and the CUDA toolkit. To avoid this threat,

6.9. RELATED WORK

6

167

we conduct our experiment on different NVIDIA graphic cards and different releases of
CUDA toolkit.

Internal validity: The main threat to internal validity for our study is the implemen-
tation of MUTGPU for the experiment. To reduce internal threats to a large extent, we
carefully reviewed and tested all code to eliminate potential faults in our implementa-
tion. Another threat to internal validity is the detection of equivalent mutants through
manual analysis. However, this threat is unavoidable and shared by other studies that
attempt to detect equivalent mutants [165, 252].

Construct validity: The main threat to construct validity is the measurement we
used to evaluate our methods. We used the percentage of non-equivalent mutants and
the mutation score as key metrics in our experiment, both of which have been widely
used in other studies on mutation testing.

6.9. RELATED WORK
With wide-spread applications of GPUs in High Performance Computing (HPC) [134,
336] and safety-critical domains (e.g., medical science [332] and automotive [225]), there
have been increasing attentions on the quality assurance of GPU applications [158, 303],
such as dynamic analysis [82] and formal verification [78, 227].

Most related to our approach are fault injection techniques in GPGPU applications.
Farazmand et al. [137] attempted to quantify the Architectural Vulnerability Factor (AVF)
of GPU hardware structures using statistical fault injection. They injected faults into
register files, local memory, and active mask stack to characterise the vulnerability of
different micro-architectural structures in GPUs to soft errors. Yim et al. [374] developed
a mutation-based fault injection tool for automated reliability testing of GPU devices.
They modeled both single- and multi-bit errors in the architecture state to represent the
silent data corruption (SDC) error.

Fang et al. [135] proposed a fault injection methodology to evaluate the error re-
silience of the GPGPU applications. They aimed at injecting the faults that represent
real hardware errors where they adopted the single-bit-flip fault model to simulate tran-
sient faults in GPU processors. Hari et al. [173] presented an fault injection-based frame-
work called SASSIFI for GPU application resilience evaluation, especially on soft errors.
SASSIFI serves two kinds of tasks: (1) inject bit-flip errors into the register file for AVF
analysis; (2) inject errors in the outputs of the instructions for error propagation evalua-
tion.

All the above studies have targeted the errors related to the GPU hardware. While we
focus on the software aspect of GPU applications where we design mutation operators
in the ways that engineers could make mistakes in GPU programming.

6.10. CONCLUSION AND FUTURE WORK
This chapter aims to explore whether GPU programming can benefit from mutation test-
ing. Compared to the CPU, the GPU differs greatly in the architecture and the program-
ming model, thus, GPU programming comes with its own set of challenges. Upon obser-
vation, we found GPU code with issues of memory management, thread management
and atomic operations can easily pass the test suite selected with conventional muta-

6

168 6. APPLYING MUTATION TESTING TO GPU PROGRAMS

tion operators. Thus, we propose nine GPU-specific mutation operators according to
the main syntactic differences between CPU and GPU programming.

To evaluate our approach, we present a tool coined MUTGPU and conduct an experi-
ment on six CUDA systems. Our results show promising findings that GPU programming
can benefit from mutation testing in three ways: (1) conventional mutation operators
can guide engineers to write simple direct tests; (2) GPU-specific mutation operators
can lead to more delicate test cases (thus higher quality and more test effort);
(3) equivalent mutants can help in bug detection.

This chapter makes the following contributions:

• nine GPU-specific mutation operators;

• a mutation tool (MUTGPU [389]) working on CUDA;

• comparison of conventional and GPU-specific operators;

• a preliminary experiment on six GPU applications [389].

Future work. In the future, we aim to conduct additional case studies on more realis-
tic GPU systems. Also, we would like to explore another GPU platforms, such as OpenCL.

7
CONCLUSION

This chapter concludes this thesis by first revisiting our research questions from Chap-
ter 1, discussing the main threats to validity, and outlining the recommendations for
future work.

7.1. RESEARCH QUESTIONS REVISITED
In this section, we are going to revisit the research questions we propose in Chapter 1.
We present the main takeaways from the answers to those research questions.

RQ2 How is mutation testing actually applied?

In Chapter 2, we have reported on a systematic literature review on the application per-
spective of mutation testing based on a collection of 191 papers from 22 venues. Through
a detailed reading of this research body, we derive an attribute framework that is conse-
quently used to characterise the selected studies in a structured manner. This attribute
framework generalises and details the essential elements related to the actual applica-
tion of mutation testing, such as in which circumstances mutation testing is used and
which mutation testing tool is selected. In particular, a generic classification of muta-
tion operators is constructed to study and compare the mutation operators used in the
experiments described.

Our main findings from the systematic literature review are: (1) Most studies (70.2%)
use mutation testing as as a fault-based evaluation method in different quality assurance
processes. Those studies mainly target the unit level. (2) Many of the supporting tech-
niques for making mutation testing truly applicable are still under-developed. The two
key problems, namely the equivalent mutant detection problem and the high compu-
tation cost of mutation testing issues, are not well-solved in the context of our research
body. (3) A deeper understanding of mutation testing is required, such as what particular
kinds of faults mutation testing is good at finding. (4) The awareness of appropriately re-
porting mutation testing in testing experiments should be raised among the researchers.
The first three findings further attract our attention, resulting in RQ3 - RQ6.

169

7

170 7. CONCLUSION

RQ3 Can compression techniques be used to speed up mutation testing?

In Chapter 3, we have conducted a detailed investigation of different compression
techniques to speed up mutation testing using 20 open-source projects. We have intro-
duced and investigated six compression strategies based on two clustering algorithms
and three mutant selection strategies. In particular, we use overlapped and FCA group-
ings to cluster mutants based on their reachability and necessity condition against the
test suite, and then apply mutant selection (three selection strategies, i.e., pure ran-
dom, random with knowledge of mutation locations and random with mutation oper-
ator types) to decide which ones need to be executed in strong mutation. Also, we con-
sider 10% random sampling and weak mutation methods as baselines.

The results of our empirical study show that mutant compression techniques can
effectively speed up strong mutation testing up to 94.3 times with an accuracy > 90%.
FCA-based compression is the fastest strategy, while overlapped grouping with the muta-
tion location knowledge in mutant selection is the most accurate. In comparison, weak
mutation attains a higher absolute error (23%) and lower accuracy (75%). Random sam-
pling with 10% as sampling percentage is statistically less accurate than all mutant com-
pression strategies, and worse in terms of speed-up than four compression strategies
(excluding the two with knowledge of mutation locations).

Another important finding is that mutation location trumps mutation operator in-
formation when selecting mutants to evaluate for strong mutation. Hence, we suggest
researchers should take into account the mutation locations in addition to the mutation
operators when detecting redundant or subsuming mutants (e.g., [46, 202, 219]).

RQ4 How can production code quality in terms of testability and observability influ-
ence the mutation score?

In Chapter 4, we have investigated our hypothesis that code quality especially re-
garding the testability and observability plays an essential role in mutation testing. We
have collected 64 existing source code quality metrics for testability, and have proposed
a set of metrics that specifically target observability. We have first investigated the rela-
tionships between testability/observability metrics and the mutation score involving six
open source Java projects. We observe that the 64 existing code quality metrics are not
strongly correlated with the mutation score (|r ho| <0.27), while our newly proposed ob-
servability metrics do show a stronger correlation with the mutation score (|r ho| <0.5).
In particular, test directness, which measures the extent to which the production code is
tested directly, seems to be the most essential factor.

To better understand the causality of our insights, we have continued our investiga-
tion with a case study of 16 methods that scored particularly bad in terms of mutation
score. In particular, we have refactored these methods and/or added tests according
to the anti-patterns that we established in terms of the code observability metrics. We
found that these anti-patterns can indeed offer software engineers actionable insights
to improve both the production code and the test suite, and improve the mutation score
along with it.

7.2. THREATS TO VALIDITY

7

171

RQ5 Can physical computing benefit from mutation testing?

In Chapter 5, we have proposed a novel mutation testing approach for physical com-
puting systems. We first have designed nine mutation operators based on common mis-
takes we have observed that are typically made by programmers during the implemen-
tation of software. To enable mutation testing for physical computing systems, we have
implemented a mutation testing tool coined MUTPHY working on the Raspberry Pi and
Arduino platforms. Then, we have conducted two case studies on both Raspberry Pi and
Arduino platforms involving nine physical computing projects.

For nine systems, our mutation testing tool generates a total of 1036 mutants of
which 41% are not killed by the original test suite (and 1.2% of the overall mutants being
equivalent mutants). Adding tests or reinforcing existing tests makes it possible to kill
94% of the non-equivalent surviving mutants. Our results have shown encouraging re-
sults in uncovering weaknesses in existing tests. Thereby, we can see that physical com-
puting could benefit from mutation testing in guiding engineers to test systems more
effectively and efficiently.

RQ6 Can mutation testing help in GPU program testing?

In Chapter 6, we aim to enable mutation testing for GPU programming to investigate
whether GPU programs can benefit from mutation testing. To achieve this goal, we have
developed a mutation testing tool named MUTGPU especially for GPU applications in
the CUDA programming model. Considering the differences between CPU and GPU
programming, we have designed nine new GPU-specific mutation operators in addition
to conventional mutation operators. We have performed an empirical study involving
six GPU projects from the CUDA Code Samples [6]. Our results have shown that the
conventional mutation operators can guide the engineers to write direct tests for GPU
programs, while GPU-specific mutation operators can lead to more delicate and more
complex test cases, which cannot be exposed by the conventional mutation operators.

7.2. THREATS TO VALIDITY
The threats to validity address the question of how our results and conclusions might
be wrong [247], which is an essential part to judge the quality of a research study. In this
section, we describe the main threats to validity of this thesis by summarising the threats
to validity for each research question (RQ2-RQ6). There are detailed analyses of threats
to validity for each research question in their corresponding chapter.

External validity: The external validity is concerned with whether we can generalise
the results outside the scope of our thesis [139]. The main external validity for our thesis
is the subject systems selection. The ways we have attempted to mitigate this threat
to validity is (1) selecting at least six projects that differ in size, number of test cases
and application domain; (2) selecting open-source projects whenever possible to enable
replications of our study; (3) selecting projects that have already been widely used in
related studies. Nevertheless, although we aim for generalisability, we do acknowledge

7

172 7. CONCLUSION

that a broad replication of our study would mitigate any generalisability concerns even
further.

Internal validity: The internal validity focus on how sure we can be that the treatment
actually caused the outcome [139]. The main threat to internal validity for our thesis is
in the self-implemented tools or scripts to conduct experimental studies. Except for the
systematic literature review presented in Chapter 2, all the studies include at least a tool
or script that we have implemented by ourselves. To eliminate potential faults in our
implementations, we have carefully reviewed and tested all the code. Another threat to
internal validity is the equivalent mutant detection [91] in our experiments. As a well-
known undecidable problem [91], the equivalent mutant detection is unavoidable and
shared by other studies on mutation testing that attempt to detect equivalent mutants
or not [165, 252].

Construct validity: The construct validity concerns about the relation between the
theory behind the experiment and the observation(s) [139], i.e., whether the the ob-
served outcome corresponds to the cause/treatment we think or not. The main threat to
construct validity is the measurement we have employed to evaluate our methods. Our
attempts to minimise this risk is by adopting evaluation metrics that are widely used in
research (such as recall, precision, and AUC), as well as a sound statistical analysis to
assess the significance (Spearman’s rank-order correlation).

7.3. RECOMMENDATIONS FOR FUTURE WORK
Although mutation testing has been investigated for over four decades, it is still facing
numerous challenges for more broad applicability. This thesis aims to improve and ex-
tend the applicability of mutation testing, including speeding up mutation testing, deep-
ening understanding of mutation testing and exploring new application domains. How-
ever, research on the applicability of mutation testing still needs a long way to go. In the
following we envision four directions of future works based on the findings of this thesis.

• R1: More tool support in integrated development environments (IDEs) is needed.

Most mutation testing tools, such as Mujava [240] and PiTest [13], are developed
by third parties. The compatibility issue with the state-of-art IDEs (e.g., IntelliJ) is
not well-solved. Developing seamless integration with IDEs (like has been done
for JUnit) for mutation testing tools can greatly ease the difficulty of applying mu-
tation testing in the daily work of developers, thus potentially accelerating the ap-
plication of mutation testing.

• R2: “Smart" and personalised mutation engine.

Most mutation testing tools provide the users with several options to choose from,
for instance, the mutation operators to be used and which class/method to be mu-
tated in the mutation testing. However, the mutation engine (i.e. the framework to
create mutants) itself is not “smart" enough; this means the mutation engine just
applies the selected mutation operators to the selected class/method mechani-
cally to create mutants. Besides, every developer is unique and their common

7.3. RECOMMENDATIONS FOR FUTURE WORK

7

173

programming mistakes are various. It would be very useful that the mutation en-
gine can learn from mistake patterns of each developer and create personalised
mutants for him/her. Such a “smart" and personalised mutation engine not only
speeds up the process of mutation testing, but also guides the developer to write
better production code and tests.

• R3: Study the usability perspective of mutation testing by involving real devel-
opers.

Based on Chapter 4, numerous studies have investigated how useful mutants are.
Example studies include mutant subsumption [219], stubborn mutants [373], and
real-fault coupling [201, 295]. These studies concern mutant utility [203], the ef-
ficacy of mutation testing. However, there are few works involving real developers
in the empirical studies. We suggest a developer-centric study on mutation testing
as it would allow to gain valuable insights on which mutants are found to be most
useful.

• R4: More attentions should be paid on domain-specific mutation testing.

In Chapter 5 and Chapter 6, we have designed domain-specific mutation opera-
tors for physical computing systems and GPU programs. Compared to conven-
tional mutation operators, we found domain-specific mutation operators to be
more helpful in guiding the developers to locate the weaknesses of the programs
and write better tests. We would like to encourage researchers to explore more
application domains for mutation testing (such as intelligent agents).

REFERENCES

[1] Antlr. http://www.antlr.org/. [Online; accessed 18-September-2019].

[2] Apache Commons BCEL. https://commons.apache.org/proper/
commons-bcel/. [Online; accessed 18-September-2019].

[3] Available mutation operations (PIT). http://pitest.org/quickstart/
mutators/. [Online; accessed 10-August-2016].

[4] Code coverage using NVCC compiler. https://devtalk.nvidia.com/
default/topic/980545/code-coverage-using-nvcc-compiler/. [Online;
accessed 09-October-2019].

[5] Coverage.py. https://https://coverage.readthedocs.io. [Online; accessed
30-January-2018].

[6] CUDA Developer SDK Code Samples. https://www.nvidia.com/object/
cuda_get_samples_3.html. [Online; accessed 03-June-2019].

[7] doctest. https://docs.python.org/3/library/doctest.html. [Online; ac-
cessed 30-October-2017].

[8] GenMutants. http://pexase.codeplex.com/SourceControl/latest#
Projects/GenMutants/GenMutants/Program.cs. [Online; accessed 21-
August-2017].

[9] GitHub Repository for Javalanche. https://github.com/david-schuler/
javalanche. [Online; accessed 18-April-2018].

[10] GitHub Repository for Milu. https://github.com/yuejia/Milu/tree/
develop/src/mutators. [Online; accessed 21-August-2017].

[11] GitHub Repository for MuJava. https://github.com/jeffoffutt/muJava.
[Online; accessed 18-April-2018].

[12] GitHub Repository for Mull. https://github.com/mull-project/mull. [On-
line; accessed 18-September-2019].

[13] GitHub Repository for PIT. https://github.com/hcoles/pitest. [Online; ac-
cessed 18-July-2019].

[14] GitHub Repository for Proteum. https://github.com/magsilva/proteum.
[Online; accessed 18-April-2018].

175

176 REFERENCES

[15] GitHub Repository for Proteum/IM. https://github.com/
jacksonpradolima/proteumIM2.0. [Online; accessed 18-April-2018].

[16] HCSR04 Manual. https://www.linuxnorth.org/raspi-sump/
HC-SR04Users_Manual.pdf. [Online; accessed 30-January-2018].

[17] java-callgraph GitHub Repositry. https://github.com/gousiosg/
java-callgraph. [Online; accessed 18-September-2019].

[18] JHawk. http://www.virtualmachinery.com/jhawkprod.htm. [Online; ac-
cessed 18-September-2019].

[19] Jumble. http://jumble.sourceforge.net/mutations.html. [Online; ac-
cessed 21-August-2017].

[20] LCHB-100 H-bridge. https://www.robotshop.com/media/files/pdf/
lchb-100.pdf. [Online; accessed 27-February-2018].

[21] Major v1.3.2. http://mutation-testing.org/downloads/files/major-1.
3.2_jre7.zip. [Online; accessed 18-April-2018].

[22] Mutation Testing and Error Seeding-White Box Testing
Techniques. http://www.softwaretestinggenius.com/
mutation-testing-and-error-seeding-white-box-testing-techniques.
[Online; accessed 28-July-2016].

[23] Mutation testing literature survey metadata. https://zenodo.org/badge/
latestdoi/95541866. [Online; accessed 17-August-2017].

[24] Mutation testing systems for Java compared. http://pitest.org/java_
mutation_testing_systems/. [Online; accessed 18-September-2019].

[25] OpenFoodFacts API. https://world.openfoodfacts.org/. [Online; accessed
31-October-2017].

[26] PexMutator. http://pexase.codeplex.com/SourceControl/latest#
Projects/PexMutator/PexMutator/Program.cs. [Online; accessed 21-
August-2017].

[27] pytest. https://docs.pytest.org/en/latest/. [Online; accessed 30-October-
2017].

[28] Raspberry Camera Module V2. https://www.raspberrypi.org/products/
camera-module-v2/. [Online; accessed 31-October-2017].

[29] Raspberry Pi Zero W. https://www.raspberrypi.org/products/
raspberry-pi-zero-w/. [Online; accessed 31-October-2017].

[30] SO14057678: cuda matrix multiplication by columns. https://stackoverflow.
com/questions/14057678/cuda-matrix-multiplication-by-columns.
[Online; accessed 18-March-2019].

REFERENCES 177

[31] SO21677559: array operation using CUDA kernel. https://stackoverflow.
com/questions/21677559/array-operation-using-cuda-kernel. [Online;
accessed 18-March-2019].

[32] SO25255699: Share memory in CUDA ? How does it CODE
work? https://stackoverflow.com/questions/25255699/
share-memory-in-cuda-how-does-it-code-work. [Online; accessed 18-
March-2019].

[33] SO29158775: My cuda kernal copying matrix with adjustment is
not working. https://stackoverflow.com/questions/29158775/
my-cuda-kernal-copying-matrix-with-adjustment-is-not-working.
[Online; accessed 18-March-2019].

[34] SO29233426: Cuda shared memory bug. https://stackoverflow.com/
questions/29233426/cuda-shared-memory-bug. [Online; accessed 18-
March-2019].

[35] SO33159171: CUDA C sum 1 dimension of 2D array and re-
turn. https://stackoverflow.com/questions/33159171/
cuda-c-sum-1-dimension-of-2d-array-and-return. [Online; accessed
18-March-2019].

[36] SO9488590: Shared memory mutex with CUDA - adding to a list
of items. https://stackoverflow.com/questions/9488590/
shared-memory-mutex-with-cuda-adding-to-a-list-of-items. [On-
line; accessed 18-March-2019].

[37] SO9859456: cuda thread indexing. https://stackoverflow.com/questions/
9859456/cuda-thread-indexing. [Online; accessed 18-March-2019].

[38] Sofya. http://sofya.unl.edu/doc/manual/user/mutator.html. [Online;
accessed 21-August-2017].

[39] The Major mutation framework. http://mutation-testing.org/doc/major.
pdf. [Online; accessed 21-August-2017].

[40] unittest. https://docs.python.org/3/library/unittest.html. [Online; ac-
cessed 30-October-2017].

[41] Allen Troy Acree Jr. On mutation. Technical report, DTIC Document, 1980.

[42] Konstantinos Adamopoulos, Mark Harman, and Robert M Hierons. How to over-
come the equivalent mutant problem and achieve tailored selective mutation
using co-evolution. In Genetic and evolutionary computation conference, pages
1338–1349. Springer, 2004.

[43] Hiralal Agrawal, Richard DeMillo, R_ Hathaway, William Hsu, Wynne Hsu, Edward
Krauser, Rhonda J Martin, Aditya Mathur, and Eugene Spafford. Design of mutant
operators for the c programming language. Technical report, Technical Report

178 REFERENCES

SERC-TR-41-P, Software Engineering Research Center, Department of Computer
Science, Purdue University, Indiana, 1989.

[44] Bernhard K Aichernig, Harald Brandl, Elisabeth Jöbstl, Willibald Krenn, Rupert
Schlick, and Stefan Tiran. Killing strategies for model-based mutation testing.
Software Testing, Verification and Reliability, 25(8):716–748, 2015.

[45] Roger T Alexander, James M Bieman, Sudipto Ghosh, and Bixia Ji. Mutation of java
objects. In Software Reliability Engineering, 2002. ISSRE 2003. Proceedings. 13th
International Symposium on, pages 341–351. IEEE, 2002.

[46] Paul Ammann, Marcio Eduardo Delamaro, and Jeff Offutt. Establishing theoretical
minimal sets of mutants. In Software Testing, Verification and Validation (ICST),
2014 IEEE Seventh International Conference on, pages 21–30. IEEE, 2014.

[47] Paul Ammann and Jeff Offutt. Introduction to software testing. Cambridge Univer-
sity Press, 2008.

[48] Paul Ammann and Jeff Offutt. Introduction to Software Testing, 2nd edition. Cam-
bridge University Press, 2017.

[49] Paul Anderson. Finding Getters and Setters with
Java Reflection. http://asgteach.com/2012/11/
finding-getters-and-setters-with-java-reflection/, November 2012.
[Online; accessed 18-September-2019].

[50] James H Andrews, Lionel C Briand, and Yvan Labiche. Is mutation an appropriate
tool for testing experiments? In International Conference on Software Engineering,
pages 402–411. IEEE, 2005.

[51] James H Andrews, Lionel C Briand, Yvan Labiche, and Akbar Siami Namin. Using
mutation analysis for assessing and comparing testing coverage criteria. Software
Engineering, IEEE Transactions on, 32(8):608–624, 2006.

[52] Kelly Androutsopoulos, David Clark, Haitao Dan, Robert M Hierons, and Mark
Harman. An analysis of the relationship between conditional entropy and failed
error propagation in software testing. In Proceedings of the 36th International Con-
ference on Software Engineering, pages 573–583. ACM, 2014.

[53] Giuliano Antoniol, Lionel C Briand, M Di Penta, and Yvan Labiche. A case study
using the round-trip strategy for state-based class testing. In Software Reliabil-
ity Engineering, 2002. ISSRE 2003. Proceedings. 13th International Symposium on,
pages 269–279. IEEE, 2002.

[54] Andrea Arcuri and Lionel Briand. Adaptive random testing: An illusion of effec-
tiveness? In Proceedings of the 2011 International Symposium on Software Testing
and Analysis, pages 265–275. ACM, 2011.

[55] Arduino. Arduino Mega ADK. https://store.arduino.cc/
arduino-mega-adk-rev3. [Online; accessed 27-February-2018].

REFERENCES 179

[56] Arduino. Arduino Uno. https://store.arduino.cc/arduino-uno-rev3. [On-
line; accessed 25-September-2017].

[57] Erik Arisholm and Lionel C Briand. Predicting fault-prone components in a java
legacy system. In Proceedings of the 2006 ACM/IEEE international symposium on
Empirical software engineering, pages 8–17. ACM, 2006.

[58] Jean Arlat, Yves Crouzet, Johan Karlsson, Peter Folkesson, Emmerich Fuchs, and
Günther H Leber. Comparison of physical and software-implemented fault injec-
tion techniques. IEEE Transactions on Computers, 52(9):1115–1133, 2003.

[59] Dimitrios Athanasiou, Ariadi Nugroho, Joost Visser, and Andy Zaidman. Test code
quality and its relation to issue handling performance. IEEE Transactions on Soft-
ware Engineering, 40(11):1100–1125, 2014.

[60] Al Audet. hcsr04sensor. https://github.com/alaudet/hcsr04sensor. [On-
line; accessed 30-January-2018].

[61] Simon Außerlechner, Sandra Fruhmann, Wolfgang Wieser, Birgit Hofer, Raphael
Spörk, Clemens Mühlbacher, and Franz Wotawa. The right choice matters! smt
solving substantially improves model-based debugging of spreadsheets. In 2013
13th International Conference on Quality Software, pages 139–148. IEEE, 2013.

[62] Richard Baker and Ibrahim Habli. An empirical evaluation of mutation testing for
improving the test quality of safety-critical software. IEEE Transactions on Soft-
ware Engineering, 39(6):787–805, 2013.

[63] Douglas Baldwin and Frederick Sayward. Heuristics for determining equivalence
of program mutations. Technical report, DTIC Document, 1979.

[64] Thomas Ball, Ella Bounimova, Byron Cook, Vladimir Levin, Jakob Lichtenberg,
Con McGarvey, Bohus Ondrusek, Sriram K Rajamani, and Abdullah Ustuner. Thor-
ough static analysis of device drivers. ACM SIGOPS Operating Systems Review,
40(4):73–85, 2006.

[65] Ellen Francine Barbosa, José Carlos Maldonado, and Auri Marcelo Rizzo Vincenzi.
Toward the determination of sufficient mutant operators for c. Software Testing,
Verification and Reliability, 11(2):113–136, 2001.

[66] Danilo Bargen. RPLCD. https://github.com/dbrgn/RPLCD. [Online; accessed
30-January-2018].

[67] Benoit Baudry, Franck Fleurey, J-M Jézéquel, and Yves Le Traon. Genes and bac-
teria for automatic test cases optimization in the. net environment. In Software
Reliability Engineering, 2002. ISSRE 2003. Proceedings. 13th International Sympo-
sium on, pages 195–206. IEEE, 2002.

[68] Benoit Baudry, Franck Fleurey, Jean-Marc Jézéquel, and Yves Le Traon. From ge-
netic to bacteriological algorithms for mutation-based testing. Software Testing,
Verification and Reliability, 15(2):73–96, 2005.

180 REFERENCES

[69] Benoit Baudry, Vu Le Hanh, J-M Jézéquel, and Yves Le Traon. Building trust into oo
components using a genetic analogy. In Software Reliability Engineering, 2000. IS-
SRE 2000. Proceedings. 11th International Symposium on, pages 4–14. IEEE, 2000.

[70] Kent Beck, Martin Fowler, and Grandma Beck. Bad smells in code. Refactoring:
Improving the design of existing code, pages 75–88, 1999.

[71] Moritz Beller, Georgios Gousios, Annibale Panichella, Sebastian Proksch, Sven
Amann, and Andy Zaidman. Developer testing in the IDE: Patterns, beliefs, and
behavior. IEEE Transactions on Software Engineering (TSE), 45(3):261–284, 2019.

[72] Moritz Beller, Georgios Gousios, Annibale Panichella, and Andy Zaidman. When,
how and why developers (do not) test in their IDEs. In Proceedings of the Joint
Meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE), pages 179–
190. ACM, 2015.

[73] Moritz Beller, Georgios Gousios, and Andy Zaidman. How (much) do developers
test? In Proceedings of the International Conference on Software Engineering (ICSE
- volume 2), pages 559–562. IEEE, 2015.

[74] Moritz Beller, Niels Spruit, Diomidis Spinellis, and Andy Zaidman. On the di-
chotomy of debugging behavior among programmers. In Proceedings of the Inter-
national Conference on Software Engineering (ICSE), pages 572–583. ACM, 2018.

[75] Fevzi Belli and Mutlu Beyazıt. Exploiting model morphology for event-based test-
ing. IEEE Transactions on Software Engineering, 41(2):113–134, 2015.

[76] Fevzi Belli, Mutlu Beyazit, Tomohiko Takagi, and Zengo Furukawa. Mutation test-
ing of" go-back" functions based on pushdown automata. In 2011 Fourth IEEE
International Conference on Software Testing, Verification and Validation, pages
249–258. IEEE, 2011.

[77] Antonia Bertolino. Software testing research: Achievements, challenges, dreams.
In 2007 Future of Software Engineering, pages 85–103. IEEE Computer Society,
2007.

[78] Adam Betts, Nathan Chong, Alastair Donaldson, Shaz Qadeer, and Paul Thomson.
Gpuverify: a verifier for gpu kernels. In ACM SIGPLAN Notices, volume 47, pages
113–132. ACM, 2012.

[79] James M Bieman, Sudipto Ghosh, and Roger T Alexander. A technique for muta-
tion of java objects. In Automated Software Engineering, 2001.(ASE 2001). Proceed-
ings. 16th Annual International Conference on, pages 337–340. IEEE, 2001.

[80] Robert Binder. Testing object-oriented systems: models, patterns, and tools.
Addison-Wesley Professional, 2000.

[81] Grady Booch. Object oriented analysis & design with application. Pearson Educa-
tion India, 2006.

REFERENCES 181

[82] Michael Boyer, Kevin Skadron, and Westley Weimer. Automated dynamic analysis
of cuda programs. In Third Workshop on Software Tools for MultiCore Systems,
page 33, 2008.

[83] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, Oct 2001.

[84] Leo Breiman. Classification and regression trees. Routledge, 2017.

[85] Pearl Brereton, Barbara A Kitchenham, David Budgen, Mark Turner, and Mo-
hamed Khalil. Lessons from applying the systematic literature review pro-
cess within the software engineering domain. Journal of systems and software,
80(4):571–583, 2007.

[86] Lionel C Briand, Yvan Labiche, and Q Lin. Improving statechart testing criteria
using data flow information. In Software Reliability Engineering, 2005. ISSRE 2005.
16th IEEE International Symposium on, pages 10–pp. IEEE, 2005.

[87] Lionel C Briand, Yvan Labiche, and Yihong Wang. Using simulation to empirically
investigate test coverage criteria based on statechart. In Proceedings of the 26th
International Conference on Software Engineering, pages 86–95. IEEE Computer
Society, 2004.

[88] David Bingham Brown, Michael Vaughn, Ben Liblit, and Thomas Reps. The care
and feeding of wild-caught mutants. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, pages 511–522. ACM, 2017.

[89] Magiel Bruntink and Arie van Deursen. An empirical study into class testability.
Journal of systems and software, 79(9):1219–1232, 2006.

[90] Tim Budd and Fred Sayward. Users guide to the pilot mutation system. Yale Uni-
versity, New Haven, Connecticut, Technique Report, 114, 1977.

[91] Timothy A Budd and Dana Angluin. Two notions of correctness and their relation
to testing. Acta Informatica, 18(1):31–45, 1982.

[92] Timothy A Budd, Richard J Lipton, Richard A DeMillo, and Frederick G Sayward.
Mutation analysis. Yale University, Department of Computer Science, 1979.

[93] Timothy Alan Budd. Mutation analysis of program test data. PhD thesis, Yale Uni-
versity, New Haven, CT, USA, 1980.

[94] Matteo Cargnelutti. Jean-Pierre. https://github.com/matteocargnelutti/
jean-pierre. [Online; accessed 31-January-2018].

[95] Heung Seok Chae, Gyun Woo, Tae Yeon Kim, Jung Ho Bae, and Won-Young Kim.
An automated approach to reducing test suites for testing retargeted c compilers
for embedded systems. Journal of Systems and Software, 84(12):2053–2064, 2011.

[96] Thierry Titcheu Chekam, Mike Papadakis, Tegawendé Bissyandé, Yves Le
Traon, and Koushik Sen. Selecting fault revealing mutants. arXiv preprint
arXiv:1803.07901, 2018.

182 REFERENCES

[97] Wei Chen, Roland H Untch, Gregg Rothermel, Sebastian Elbaum, and Jeffery
Von Ronne. Can fault-exposure-potential estimates improve the fault detection
abilities of test suites? Software Testing, Verification and Reliability, 12(4):197–218,
2002.

[98] John A Clark, Haitao Dan, and Robert M Hierons. Semantic mutation testing. In
Software Testing, Verification, and Validation Workshops (ICSTW), 2010 Third In-
ternational Conference on, pages 100–109. IEEE, 2010.

[99] Henry Coles. GitHub Repository for PIT. https://github.com/hcoles/pitest.
[Online; accessed 18-September-2019].

[100] Henry Coles. Mutation testing - a practitioners perspective. https://
github.com/hcoles/slides/blob/master/slides.pdf. [Online; accessed
18-September-2019].

[101] Henry Coles. PIT Incremental Analysis. http://pitest.org/quickstart/
incremental_analysis/. [Online; accessed 18-September-2019].

[102] Henry Coles. PIT Main Page. http://pitest.org/. [Online; accessed 18-
September-2019].

[103] Henry Coles. PIT Mutation Operators. http://pitest.org/quickstart/
mutators/. [Online; accessed 28-May-2019].

[104] W. J. Conover. Practical Nonparametric Statistics. Wiley, third edition, 1998.

[105] Reidar Conradi and Alf Inge Wang. Empirical methods and studies in software en-
gineering: experiences from ESERNET, volume 2765. Springer, 2003.

[106] Bas Cornelissen, Andy Zaidman, Arie Van Deursen, Leon Moonen, and Rainer
Koschke. A systematic survey of program comprehension through dynamic anal-
ysis. IEEE Transactions on Software Engineering, 35(5):684–702, 2009.

[107] Hernan Czemerinski, Victor Braberman, and Sebastian Uchitel. Behaviour ab-
straction coverage as black-box adequacy criteria. In Software Testing, Verification
and Validation (ICST), 2013 IEEE Sixth International Conference on, pages 222–
231. IEEE, 2013.

[108] Hernan Czemerinski, Victor Braberman, and Sebastian Uchitel. Behaviour ab-
straction adequacy criteria for api call protocol testing. Software Testing, Verifica-
tion and Reliability, 2015.

[109] Haitao Dan and Robert M Hierons. Smt-c: A semantic mutation testing tools for c.
In 2012 IEEE Fifth International Conference on Software Testing, Verification and
Validation, pages 654–663. IEEE, 2012.

[110] Romain Delamare, Benoit Baudry, Sudipto Ghosh, Shashank Gupta, and Yves
Le Traon. An approach for testing pointcut descriptors in aspectj. Software Testing,
Verification and Reliability, 21(3):215–239, 2011.

REFERENCES 183

[111] Romain Delamare, Benoit Baudry, and Yves Le Traon. Ajmutator: a tool for the
mutation analysis of aspectj pointcut descriptors. In Software Testing, Verification
and Validation Workshops, 2009. ICSTW’09. International Conference on, pages
200–204. IEEE, 2009.

[112] Marcio Eduardo Delamaro, JC Maidonado, and Aditya P. Mathur. Interface muta-
tion: An approach for integration testing. IEEE Transactions on Software Engineer-
ing, 27(3):228–247, 2001.

[113] Márcio Eduardo Delamaro, José Carlos Maldonado, and AP Mathur. Proteum-a
tool for the assessment of test adequacy for c programs users guide. In PCS, vol-
ume 96, pages 79–95, 1996.

[114] Márcio Eduardo Delamaro, José Carlos Maldonado, and Auri Marcelo Rizzo Vin-
cenzi. Proteum/im 2.0: An integrated mutation testing environment. In Mutation
testing for the new century, pages 91–101. Springer, 2001.

[115] R. A. DeMillo. Test adequacy and program mutation. In Software Engineering,
1989. 11th International Conference on, pages 355–356, May 1989.

[116] RA DeMillo and A. Jefferson Offutt. Constraint-based automatic test data genera-
tion. IEEE Trans. Software Eng., 17(9):900–910, 1991.

[117] Richard A DeMillo, Richard J Lipton, and Frederick G Sayward. Hints on test data
selection: Help for the practicing programmer. Computer, (4):34–41, 1978.

[118] Richard A DeMillo and Aditya P Mathur. On the use of software artifacts to evaluate
the effectiveness of mutation analysis for detecting errors in production software.
Technical report, Technical report, Software Engineering Research Center, Purdue
University . . . , 1991.

[119] Richard A DeMillo and A Jefferson Offutt. Experimental results from an automatic
test case generator. ACM Transactions on Software Engineering and Methodology
(TOSEM), 2(2):109–127, 1993.

[120] Giovanni Denaro, Alessandro Margara, Mauro Pezze, and Mattia Vivanti. Dynamic
data flow testing of object oriented systems. In Proceedings of the 37th Interna-
tional Conference on Software Engineering-Volume 1, pages 947–958. IEEE Press,
2015.

[121] Lin Deng, Jeff Offutt, Paul Ammann, and Nariman Mirzaei. Mutation operators for
testing android apps. Information and Software Technology, 81:154–168, 2017.

[122] Alex Denisov and Stanislav Pankevich. Mull it over: mutation testing based on
llvm. In 2018 IEEE International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), pages 25–31. IEEE, 2018.

[123] Anna Derezinska. Quality assessment of mutation operators dedicated for c# pro-
grams. In Quality Software, 2006. QSIC 2006. Sixth International Conference on,
pages 227–234. IEEE, 2006.

184 REFERENCES

[124] Edsger Wybe Dijkstra et al. Notes on structured programming, 1970.

[125] Tharam Dillon, Chen Wu, and Elizabeth Chang. Cloud computing: issues and
challenges. In Advanced Information Networking & Applications, pages 27–33.
IEEE, 2010.

[126] Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. Supporting controlled ex-
perimentation with testing techniques: An infrastructure and its potential impact.
Empirical Software Engineering, 10(4):405–435, 2005.

[127] Hyunsook Do and Gregg Rothermel. A controlled experiment assessing test case
prioritization techniques via mutation faults. In Software Maintenance, 2005.
ICSM’05. Proceedings of the 21st IEEE International Conference on, pages 411–420.
IEEE, 2005.

[128] Hyunsook Do and Gregg Rothermel. On the use of mutation faults in empirical as-
sessments of test case prioritization techniques. Software Engineering, IEEE Trans-
actions on, 32(9):733–752, 2006.

[129] Lydie du Bousquet and Michel Delaunay. Towards mutation analysis for lustre
programs. Electronic Notes in Theoretical Computer Science, 203(4):35–48, 2008.

[130] Joe W Duran and Simeon C Ntafos. An evaluation of random testing. Software
Engineering, IEEE Transactions on, (4):438–444, 1984.

[131] Sebastian Elbaum, Alexey G Malishevsky, and Gregg Rothermel. Test case prioriti-
zation: A family of empirical studies. Software Engineering, IEEE Transactions on,
28(2):159–182, 2002.

[132] Michael Ellims, Darrel Ince, and Marian Petre. The csaw c mutation tool: Ini-
tial results. In Testing: Academic and Industrial Conference Practice and Research
Techniques-MUTATION, 2007. TAICPART-MUTATION 2007, pages 185–192. IEEE,
2007.

[133] Eduard P Enoiu, Daniel Sundmark, Adnan Čaušević, Robert Feldt, and Paul Pet-
tersson. Mutation-based test generation for plc embedded software using model
checking. In IFIP International Conference on Testing Software and Systems, pages
155–171. Springer, 2016.

[134] Zhe Fan, Feng Qiu, Arie Kaufman, and Suzanne Yoakum-Stover. Gpu cluster for
high performance computing. In Proceedings of the 2004 ACM/IEEE conference on
Supercomputing, page 47. IEEE Computer Society, 2004.

[135] Bo Fang, Karthik Pattabiraman, Matei Ripeanu, and Sudhanva Gurumurthi. Gpu-
qin: A methodology for evaluating the error resilience of gpgpu applications. In
2014 IEEE International Symposium on Performance Analysis of Systems and Soft-
ware (ISPASS), pages 221–230. IEEE, 2014.

REFERENCES 185

[136] Chunrong Fang, Zhenyu Chen, Kun Wu, and Zhihong Zhao. Similarity-based test
case prioritization using ordered sequences of program entities. Software Quality
Journal, 22(2):335–361, 2014.

[137] N Farazmand, R Ubal, and D Kaeli. Statistical fault injection-based avf analysis of
a gpu architecture. Proceedings of SELSE, 12, 2012.

[138] Michael Feathers. Working effectively with legacy code. Prentice Hall Professional,
2004.

[139] Robert Feldt and Ana Magazinius. Validity threats in empirical software engineer-
ing research-an initial survey. In Seke, pages 374–379, 2010.

[140] Norman E. Fenton and Niclas Ohlsson. Quantitative analysis of faults and fail-
ures in a complex software system. IEEE Transactions on Software engineering,
26(8):797–814, 2000.

[141] Andres Flores and Macario Polo. Testing-based process for component substi-
tutability. Software Testing, Verification and Reliability, 22(8):529–561, 2012.

[142] Andres Flores and Macario Polo Usaola. Testing-based assessment process for up-
grading component systems. In Software Maintenance, 2008. ICSM 2008. IEEE In-
ternational Conference on, pages 327–336. IEEE, 2008.

[143] Eibe Frank, Mark A. Hall, and Ian H. Witten. The WEKA Workbench. Online Ap-
pendix for "Data Mining: Practical Machine Learning Tools and Techniques". Mor-
gan Kaufmann, 4 edition, 2016.

[144] Phyllis G Frankl, Stewart N Weiss, and Cang Hu. All-uses vs mutation testing:
an experimental comparison of effectiveness. Journal of Systems and Software,
38(3):235–253, 1997.

[145] Gordon Fraser and Andrea Arcuri. Evosuite: automatic test suite generation for
object-oriented software. In Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software engineering, pages
416–419. ACM, 2011.

[146] Gordon Fraser and Andrea Arcuri. Sound empirical evidence in software testing.
In Proceedings of the 34th International Conference on Software Engineering, pages
178–188. IEEE Press, 2012.

[147] Gordon Fraser and Andrea Arcuri. A Large Scale Evaluation of Automated Unit
Test Generation Using EvoSuite. ACM Trans. Softw. Eng. Methodol., 24(2):8, 2014.

[148] Gordon Fraser and Andrea Arcuri. Achieving scalable mutation-based generation
of whole test suites. Empirical Software Engineering, 20(3):783–812, 2014.

[149] Gordon Fraser and Andrea Arcuri. Achieving scalable mutation-based generation
of whole test suites. Empirical Software Engineering, 20(3):783–812, 2015.

186 REFERENCES

[150] Gordon Fraser and Andreas Zeller. Mutation-driven generation of unit tests and
oracles. Software Engineering, IEEE Transactions on, 38(2):278–292, 2012.

[151] Roy S. Freedman. Testability of software components. IEEE transactions on Soft-
ware Engineering, 17(6):553–564, 1991.

[152] Emmerich Fuchs. An evaluation of the error detection mechanisms in mars using
software-implemented fault injection. Dependable Computing Conference, pages
73–90, 1996.

[153] Jerry Gao and M-C Shih. A component testability model for verification and mea-
surement. In 29th Annual International Computer Software and Applications Con-
ference (COMPSAC’05), volume 2, pages 211–218. IEEE, 2005.

[154] Salvador García, Daniel Molina, Manuel Lozano, and Francisco Herrera. A study
on the use of non-parametric tests for analyzing the evolutionary algorithms’ be-
haviour: a case study on the cec’2005 special session on real parameter optimiza-
tion. Journal of Heuristics, 15(6):617, 2008.

[155] Gregory Gay, Matt Staats, Michael Whalen, and Mats PE Heimdahl. Auto-
mated oracle data selection support. IEEE Transactions on Software Engineering,
41(11):1119–1137, 2015.

[156] Gregory Gay, Matt Staats, Michael Whalen, and Mats PE Heimdahl. The risks of
coverage-directed test case generation. Software Engineering, IEEE Transactions
on, 41(8):803–819, 2015.

[157] Geoffrey K. Gill and Chris F. Kemerer. Cyclomatic complexity density and
software maintenance productivity. IEEE transactions on software engineering,
17(12):1284–1288, 1991.

[158] L Bautista Gomez, Franck Cappello, Luigi Carro, Nathan DeBardeleben, Bo Fang,
Sudhanva Gurumurthi, Karthik Pattabiraman, Paolo Rech, and M Sonza Reorda.
Gpgpus: how to combine high computational power with high reliability. In Pro-
ceedings of the conference on Design, Automation & Test in Europe, page 341. Euro-
pean Design and Automation Association, 2014.

[159] John B Goodenough and Susan L Gerhart. Toward a theory of test data selection.
IEEE Transactions on software Engineering, (2):156–173, 1975.

[160] Rahul Gopinath, Iftekhar Ahmed, Mohammad Amin Alipour, Carlos Jensen, and
Alex Groce. Mutation reduction strategies considered harmful. IEEE Transactions
on Reliability, 66(3):854–874, Sept 2017.

[161] Rahul Gopinath, Mohammad Amin Alipour, Iftekhar Ahmed, Carlos Jensen, and
Alex Groce. On the limits of mutation reduction strategies. In Software Engineer-
ing (ICSE), 2016 IEEE/ACM 38th International Conference on, pages 511–522. IEEE,
2016.

REFERENCES 187

[162] Rahul Gopinath, Carlos Jensen, and Alex Groce. The theory of composite faults. In
Software Testing, Verification and Validation (ICST), 2017 IEEE International Con-
ference on, pages 47–57. IEEE, 2017.

[163] Dorothy Graham, Erik Van Veenendaal, and Isabel Evans. Foundations of software
testing: ISTQB certification. Cengage Learning EMEA, 2008.

[164] Kate Gregory and Ade Miller. C++ AMP: accelerated massive parallelism with Mi-
crosoft Visual C++. Microsoft Press, 2012.

[165] Bernhard JM Grün, David Schuler, and Andreas Zeller. The impact of equivalent
mutants. In 2009 International Conference on Software Testing, Verification, and
Validation Workshops, pages 192–199. IEEE, 2009.

[166] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu
Palaniswami. Internet of things (iot): A vision, architectural elements, and
future directions. Future generation computer systems, 29(7):1645–1660, 2013.

[167] Tracy Hall, Sarah Beecham, David Bowes, David Gray, and Steve Counsell. A sys-
tematic literature review on fault prediction performance in software engineering.
IEEE Transactions on Software Engineering, 38(6):1276–1304, 2011.

[168] Richard G. Hamlet. Testing programs with the aid of a compiler. IEEE Trans. on
Softw. engineering, (4):279–290, 1977.

[169] Jiawei Han, Jian Pei, and Micheline Kamber. Data mining: concepts and tech-
niques. Elsevier, 2011.

[170] Le Thi My Hanh, Nguyen Thanh Binh, and Khuat Thanh Tung. Survey on
mutation-based test data generation. International Journal of Electrical and Com-
puter Engineering, 5(5), 2015.

[171] Dan Hao, Lingming Zhang, Lu Zhang, Gregg Rothermel, and Hong Mei. A unified
test case prioritization approach. ACM Transactions on Software Engineering and
Methodology (TOSEM), 24(2):10, 2014.

[172] Dan Hao, Lu Zhang, Xingxia Wu, Hong Mei, and Gregg Rothermel. On-demand
test suite reduction. In Proceedings of the 34th International Conference on Soft-
ware Engineering, pages 738–748. IEEE Press, 2012.

[173] Siva Kumar Sastry Hari, Timothy Tsai, Mark Stephenson, Stephen W Keckler, and
Joel Emer. Sassifi: An architecture-level fault injection tool for gpu application re-
silience evaluation. In 2017 IEEE International Symposium on Performance Anal-
ysis of Systems and Software (ISPASS), pages 249–258. IEEE, 2017.

[174] Mark Harman, Rob Hierons, and Sebastian Danicic. The relationship between
program dependence and mutation analysis. In Mutation testing for the new cen-
tury, pages 5–13. Springer, 2001.

188 REFERENCES

[175] Nannan He, Philipp Rümmer, and Daniel Kroening. Test-case generation for em-
bedded simulink via formal concept analysis. In Design Automation Conference
(DAC), 2011 48th ACM/EDAC/IEEE, pages 224–229. IEEE, 2011.

[176] Mark Hennessy and James F Power. Analysing the effectiveness of rule-coverage
as a reduction criterion for test suites of grammar-based software. Empirical Soft-
ware Engineering, 13(4):343–368, 2008.

[177] Rob Hierons, Mark Harman, and Sebastian Danicic. Using program slicing to as-
sist in the detection of equivalent mutants. Software Testing, Verification and Re-
liability, 9(4):233–262, 1999.

[178] Dennis E Hinkle, William Wiersma, Stephen G Jurs, et al. Applied statistics for the
behavioral sciences. Houghton Mifflin Boston, 1988.

[179] Birgit Hofer, Alexandre Perez, Rui Abreu, and Franz Wotawa. On the empirical
evaluation of similarity coefficients for spreadsheets fault localization. Automated
Software Engineering, 22(1):47–74, 2015.

[180] Birgit Hofer and Franz Wotawa. Why does my spreadsheet compute wrong values?
In Software Reliability Engineering (ISSRE), 2014 IEEE 25th International Sympo-
sium on, pages 112–121. IEEE, 2014.

[181] Sture Holm. A simple sequentially rejective multiple test procedure. Scandinavian
journal of statistics, pages 65–70, 1979.

[182] Shin Hong, Matt Staats, Jaemin Ahn, Moonzoo Kim, and Gregg Rothermel. Are
concurrency coverage metrics effective for testing: a comprehensive empirical in-
vestigation. Software Testing, Verification and Reliability, 25(4):334–370, 2015.

[183] Shin Hong, Matt Staats, Jeongseob Ahn, Moonzoo Kim, and Gregg Rothermel. The
impact of concurrent coverage metrics on testing effectiveness. In Software Test-
ing, Verification and Validation (ICST), 2013 IEEE Sixth International Conference
on, pages 232–241. IEEE, 2013.

[184] Shan-Shan Hou, Lu Zhang, Tao Xie, Hong Mei, and Jia-Su Sun. Applying interface-
contract mutation in regression testing of component-based software. In Software
Maintenance, 2007. ICSM 2007. IEEE International Conference on, pages 174–183.
IEEE, 2007.

[185] William E. Howden. Weak mutation testing and completeness of test sets. IEEE
Trans. Software Eng., (4):371–379, 1982.

[186] Abdulmalik Humayed, Jingqiang Lin, Fengjun Li, and Bo Luo. Cyber-physical sys-
tems security—a survey. IEEE Internet of Things Journal, 4(6):1802–1831, 2017.

[187] Chen Huo and James Clause. Interpreting coverage information using direct and
indirect coverage. In 2016 IEEE International Conference on Software Testing, Ver-
ification and Validation (ICST), pages 234–243. IEEE, 2016.

REFERENCES 189

[188] Shamaila Hussain. Mutation clustering. Ms. Th., Kings College London, Strand,
London, 2008.

[189] Laura Inozemtseva and Reid Holmes. Coverage is not strongly correlated with test
suite effectiveness. In Proceedings of the 36th International Conference on Software
Engineering, pages 435–445. ACM, 2014.

[190] Sean A Irvine, Tin Pavlinic, Leonard Trigg, John G Cleary, Stuart Inglis, and Mark
Utting. Jumble java byte code to measure the effectiveness of unit tests. In Testing:
Academic and industrial conference practice and research techniques-MUTATION,
2007. TAICPART-MUTATION 2007, pages 169–175. IEEE, 2007.

[191] IEC ISO. Iso 9126/iso, iec (hrsg.): International standard iso/iec 9126: Information
technology-software product evaluation. Quality Characteristics and Guidelines
for their use, pages 12–15, 1991.

[192] David Jackson and Martin R Woodward. Parallel firm mutation of java programs.
In Mutation testing for the new century, pages 55–61. Springer, 2001.

[193] Karthick Jayaraman, David Harvison, Vijay Ganesh, and Adam Kiezun. jfuzz: A
concolic whitebox fuzzer for java. 2009.

[194] Eunkyoung Jee, Donghwan Shin, Sungdeok Cha, Jang-Soo Lee, and Doo-Hwan
Bae. Automated test case generation for fbd programs implementing reactor pro-
tection system software. Software Testing, Verification and Reliability, 24(8):608–
628, 2014.

[195] Changbin Ji, Zhenyu Chen, Baowen Xu, and Zhihong Zhao. A Novel Method of
Mutation Clustering Based on Domain Analysis. In SEKE, pages 422–425, 2009.

[196] Yue Jia and Mark Harman. Milu: A customizable, runtime-optimized higher order
mutation testing tool for the full c language. In Practice and Research Techniques,
2008. TAIC PART’08. Testing: Academic & Industrial Conference, pages 94–98.
IEEE, 2008.

[197] Yue Jia and Mark Harman. An analysis and survey of the development of mutation
testing. IEEE Trans. on Softw. Engineering, 37(5):649–678, 2011.

[198] Matthieu Jimenez, Thierry Titcheu Chekam, Maxime Cordy, Mike Papadakis,
Marinos Kintis, Yves Le Traon, and Mark Harman. Are mutants really natural? a
study on how naturalness helps mutant selection. In 12th International Sympo-
sium on Empirical Software Engineering and Measurement (ESEM’18), 2018.

[199] Shahnewaz Amin Jolly, Vahid Garousi, and Matt M Eskandar. Automated unit test-
ing of a scada control software: an industrial case study based on action research.
In Software Testing, Verification and Validation (ICST), 2012 IEEE Fifth Interna-
tional Conference on, pages 400–409. IEEE, 2012.

190 REFERENCES

[200] René Just, Michael D Ernst, and Gordon Fraser. Efficient mutation analysis by
propagating and partitioning infected execution states. In Int’l Symp. on Software
Testing and Analysis (ISSTA), pages 315–326. ACM, 2014.

[201] René Just, Darioush Jalali, Laura Inozemtseva, Michael D Ernst, Reid Holmes, and
Gordon Fraser. Are mutants a valid substitute for real faults in software testing? In
Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering, pages 654–665. ACM, 2014.

[202] René Just, Gregory M Kapfhammer, and Franz Schweiggert. Using non-redundant
mutation operators and test suite prioritization to achieve efficient and scalable
mutation analysis. In Software Reliability Engineering (ISSRE), 2012 IEEE 23rd In-
ternational Symposium on, pages 11–20. IEEE, 2012.

[203] René Just, Bob Kurtz, and Paul Ammann. Inferring mutant utility from program
context. In Proceedings of the 26th ACM SIGSOFT International Symposium on
Software Testing and Analysis, pages 284–294. ACM, 2017.

[204] Rene Just, Franz Schweiggert, and Gregory M Kapfhammer. MAJOR: An efficient
and extensible tool for mutation analysis in a Java compiler. In Int’l Conf. Auto-
mated Softw. Engineering (ASE), pages 612–615. IEEE, 2011.

[205] Ghani A. Kanawati, Nasser A. Kanawati, and Jacob A. Abraham. Ferrari: A flexible
software-based fault and error injection system. IEEE Transactions on computers,
44(2):248–260, 1995.

[206] Upulee Kanewala and James M Bieman. Using machine learning techniques to
detect metamorphic relations for programs without test oracles. In 2013 IEEE 24th
International Symposium on Software Reliability Engineering (ISSRE), pages 1–10.
IEEE, 2013.

[207] Gregory M Kapfhammer, Phil McMinn, and Chris J Wright. Search-based testing
of relational schema integrity constraints across multiple database management
systems. In 2013 IEEE Sixth International Conference on Software Testing, Verifica-
tion and Validation, pages 31–40. IEEE, 2013.

[208] Kalpesh Kapoor. Formal analysis of coupling hypothesis for logical faults. Innova-
tions in Systems and Software Engineering, 2(2):80–87, 2006.

[209] Jinhyun Kim, Inhye Kang, Jin-Young Choi, and Insup Lee. Timed and resource-
oriented statecharts for embedded software. IEEE Transactions on Industrial In-
formatics, 6(4):568–578, 2010.

[210] Kim N King and A Jefferson Offutt. A fortran language system for mutation-based
software testing. Software: Practice and Experience, 21(7):685–718, 1991.

[211] Marinos Kintis, Mike Papadakis, Andreas Papadopoulos, Evangelos Valvis, and
Nicos Malevris. Analysing and comparing the effectiveness of mutation testing
tools: A manual study. In Source Code Analysis and Manipulation (SCAM), 2016
IEEE 16th International Working Conference on, pages 147–156. IEEE, 2016.

REFERENCES 191

[212] Barbara Kitchenham. Guidelines for performing systematic literature reviews in
software engineering. In Technical Report EBSE-2007-01, 2007.

[213] Thomas Knauth, Christof Fetzer, and Pascal Felber. Assertion-driven develop-
ment: Assessing the quality of contracts using meta-mutations. In The 4th Inter-
national Workshop on Mutation Analysis (Mutation 2009), pages 182–191. IEEE,
2009.

[214] Ron Kohavi et al. A study of cross-validation and bootstrap for accuracy estimation
and model selection. In Ijcai, volume 14, pages 1137–1145. Montreal, Canada,
1995.

[215] Edward W. Krauser, Aditya P. Mathur, and Vernon J Rego. High performance
software testing on simd machines. IEEE Transactions on Software Engineering,
17(5):403–423, 1991.

[216] Willibald Krenn, Rupert Schlick, Stefan Tiran, Bernhard Aichernig, Elisabeth Job-
stl, and Harald Brandl. Momut:: Uml model-based mutation testing for uml. In
2015 IEEE 8th International Conference on Software Testing, Verification and Vali-
dation (ICST), pages 1–8. IEEE, 2015.

[217] Gunnar Kudrjavets, Nachiappan Nagappan, and Thomas Ball. Assessing the re-
lationship between software assertions and faults: An empirical investigation.
In 2006 17th International Symposium on Software Reliability Engineering, pages
204–212. IEEE, 2006.

[218] B. Kurtz, P. Ammann, and J. Offutt. Static analysis of mutant subsumption. In
2015 IEEE Eighth International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), pages 1–10, April 2015.

[219] Bob Kurtz, Paul Ammann, Marcio E Delamaro, Jeff Offutt, and Lin Deng. Mutant
subsumption graphs. In Software testing, verification and validation workshops
(ICSTW), 2014 IEEE seventh international conference on, pages 176–185. IEEE,
2014.

[220] Bob Kurtz, Paul Ammann, Jeff Offutt, Márcio E Delamaro, Mariet Kurtz, and Nida
Gökçe. Analyzing the validity of selective mutation with dominator mutants. In
Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering, pages 571–582. ACM, 2016.

[221] Jung-Hyun Kwon, In-Young Ko, Gregg Rothermel, and Matt Staats. Test case pri-
oritization based on information retrieval concepts. In Software Engineering Con-
ference (APSEC), 2014 21st Asia-Pacific, volume 1, pages 19–26. IEEE, 2014.

[222] Lynn Kysh. Difference between a systematic review and a literature review. https:
//dx.doi.org/10.6084/m9.figshare.766364.v1, 2013. [Online; accessed 4-
August-2016].

192 REFERENCES

[223] Kim G Larsen, Marius Mikucionis, Brian Nielsen, and Arne Skou. Testing real-time
embedded software using uppaal-tron: an industrial case study. In Proc. Int’l Conf.
on Embedded Software, pages 299–306. ACM, 2005.

[224] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. Gen-
prog: A generic method for automatic software repair. Ieee transactions on soft-
ware engineering, 38(1):54–72, 2012.

[225] Chiyoung Lee, Se-Won Kim, and Chuck Yoo. Vadi: Gpu virtualization for an auto-
motive platform. IEEE Transactions on Industrial Informatics, 12(1):277–290, 2015.

[226] Alan Leung, Manish Gupta, Yuvraj Agarwal, Rajesh Gupta, Ranjit Jhala, and Sorin
Lerner. Verifying gpu kernels by test amplification. In ACM SIGPLAN Notices, vol-
ume 47, pages 383–394. ACM, 2012.

[227] Guodong Li and Ganesh Gopalakrishnan. Scalable smt-based verification of gpu
kernel functions. In Proceedings of the eighteenth ACM SIGSOFT international
symposium on Foundations of software engineering, pages 187–196. ACM, 2010.

[228] Nan Li, Upsorn Praphamontripong, and Jeff Offutt. An experimental comparison
of four unit test criteria: Mutation, edge-pair, all-uses and prime path coverage. In
ICST workshops, pages 220–229. IEEE, 2009.

[229] Ping Li, Toan Huynh, Marek Reformat, and James Miller. A practical approach to
testing gui systems. Empirical Software Engineering, 12(4):331–357, 2007.

[230] R Lipton. Fault diagnosis of computer programs. Student Report, Carnegie Mellon
University, 1971.

[231] Ming-Hao Liu, You-Feng Gao, Jin-Hui Shan, Jiang-Hong Liu, Lu Zhang, and Jia-Su
Sun. An approach to test data generation for killing multiple mutants. In Software
Maintenance, 2006. ICSM 2006. IEEE International Conference on, pages 113–122.
IEEE, 2006.

[232] Yiling Lou, Dan Hao, and Lu Zhang. Mutation-based test-case prioritization in
software evolution. In Software Reliability Engineering (ISSRE), 2015 IEEE 26th
International Symposium on, pages 46–57. IEEE, 2015.

[233] Heng Lu, WK Chan, and TH Tse. Testing context-aware middleware-centric pro-
grams: a data flow approach and an RFID-based experimentation. In Int’l Symp.
Foundations of Software Engineering (FSE), pages 242–252. ACM, 2006.

[234] David Luebke and Greg Humphreys. How gpus work. Computer, 40(2):96–100,
2007.

[235] Michael R Lyu, Zubin Huang, Sam KS Sze, and Xia Cai. An empirical study on test-
ing and fault tolerance for software reliability engineering. In Software Reliability
Engineering, 2003. ISSRE 2003. 14th International Symposium on, pages 119–130.
IEEE, 2003.

REFERENCES 193

[236] Yu-Seung Ma and Sang-Woon Kim. Mutation testing cost reduction by clustering
overlapped mutants. J. Systems and Software, 115:18–30, 2016.

[237] Yu-Seung Ma and Jeff Offutt. Description of class mutation mutation operators
for java. Electronics and Telecommunications Research Institute, Korea, Tech. Rep,
2005.

[238] Yu-Seung Ma and Jeff Offutt. Description of method-level mutation operators
for java. Electronics and Telecommunications Research Institute, Korea, Tech. Rep,
2005.

[239] Yu-Seung Ma, Jeff Offutt, and Yong Rae Kwon. Mujava: an automated class muta-
tion system. Software Testing, Verification and Reliability, 15(2):97–133, 2005.

[240] Yu-Seung Ma, Jeff Offutt, and Yong-Rae Kwon. Mujava: a mutation system for java.
In Proceedings of the 28th international conference on Software engineering, pages
827–830. ACM, 2006.

[241] Lech Madeyski, Wojciech Orzeszyna, Richard Torkar, and Mariusz Józala. Over-
coming the equivalent mutant problem: A systematic literature review and a com-
parative experiment of second order mutation. Software Engineering, IEEE Trans-
actions on, 40(1):23–42, 2014.

[242] Evan Martin and Tao Xie. A fault model and mutation testing of access control
policies. In Proceedings of the 16th international conference on World Wide Web,
pages 667–676. ACM, 2007.

[243] Pedro Reales Mateo, Macario Polo Usaola, and Jeff Offutt. Mutation at the multi-
class and system levels. Science of Computer Programming, 78(4):364–387, 2013.

[244] Aditya P Mathur and W Eric Wong. An empirical comparison of data flow and
mutation-based test adequacy criteria. Software Testing, Verification and Reliabil-
ity, 4(1):9–31, 1994.

[245] MATLAB. version 9.3.0 (R2017b). The MathWorks Inc., Natick, Massachusetts,
2017.

[246] MATLAB. version 9.6.0 (R2019a). The MathWorks Inc., Natick, Massachusetts,
2019.

[247] Joseph A Maxwell. Qualitative research design: An interactive approach, vol-
ume 41. Sage publications, 2012.

[248] Paul McGuire. Getting started with pyparsing. " O’Reilly Media, Inc.", 2007.

[249] Phil Mcminn, Chris J Wright, and Gregory M Kapfhammer. The effectiveness of
test coverage criteria for relational database schema integrity constraints. ACM
Transactions on Software Engineering and Methodology (TOSEM), 25(1):8, 2015.

194 REFERENCES

[250] Xinxin Mei and Xiaowen Chu. Dissecting gpu memory hierarchy through
microbenchmarking. IEEE Transactions on Parallel and Distributed Systems,
28(1):72–86, 2016.

[251] Amin Milani Fard, Mehdi Mirzaaghaei, and Ali Mesbah. Leveraging existing tests
in automated test generation for web applications. In Proceedings of the 29th
ACM/IEEE international conference on Automated software engineering, pages 67–
78. ACM, 2014.

[252] Shabnam Mirshokraie, Ali Mesbah, and Karthik Pattabiraman. Efficient javascript
mutation testing. In 2013 IEEE Sixth International Conference on Software Testing,
Verification and Validation, pages 74–83. IEEE, 2013.

[253] Seokhyeon Moon, Yunho Kim, Moonzoo Kim, and Shin Yoo. Ask the mutants:
Mutating faulty programs for fault localization. In 2014 IEEE Seventh International
Conference on Software Testing, Verification and Validation, pages 153–162. IEEE,
2014.

[254] Leon Moonen, Arie van Deursen, Andy Zaidman, and Magiel Bruntink. On the
interplay between software testing and evolution and its effect on program com-
prehension. In Software evolution, pages 173–202. Springer, 2008.

[255] Ivan Moore. Jester-a junit test tester. Proc. of 2nd XP, pages 84–87, 2001.

[256] Wayne Motycka. Installation Instructions for Sofya. http://sofya.unl.edu/
doc/manual/installation.html, 7 2013. [Online; accessed 25-August-2016].

[257] Samar Mouchawrab, Lionel C Briand, and Yvan Labiche. A measurement frame-
work for object-oriented software testability. Information and software technology,
47(15):979–997, 2005.

[258] Elfurjani S Mresa and Leonardo Bottaci. Efficiency of mutation operators and se-
lective mutation strategies: An empirical study. Software Testing Verification and
Reliability, 9(4):205–232, 1999.

[259] Aaftab Munshi. The opencl specification. In 2009 IEEE Hot Chips 21 Symposium
(HCS), pages 1–314. IEEE, 2009.

[260] Syed Shariyar Murtaza, Nazim Madhavji, Mechelle Gittens, and Zude Li. Diagnos-
ing new faults using mutants and prior faults (nier track). In Software Engineering
(ICSE), 2011 33rd International Conference on, pages 960–963. IEEE, 2011.

[261] Akbar Siami Namin and James H Andrews. On sufficiency of mutants. In Software
Engineering-Companion, 2007. ICSE 2007 Companion. 29th International Confer-
ence on, pages 73–74. IEEE, 2007.

[262] Akbar Siami Namin and James H Andrews. The influence of size and coverage on
test suite effectiveness. In Proceedings of the eighteenth international symposium
on Software testing and analysis, pages 57–68. ACM, 2009.

REFERENCES 195

[263] Mohd Nazir, Raees A Khan, and K Mustafa. Testability estimation framework. In-
ternational Journal of Computer Applications, 2(5):9–14, 2010.

[264] Simeon C Ntafos. On testing with required elements. In Proceedings of COMPSAC,
volume 81, pages 132–139, 1981.

[265] Simeon C Ntafos. An evaluation of required element testing strategies. In Proceed-
ings of the 7th international conference on Software engineering, pages 250–256.
IEEE Press, 1984.

[266] Simeon C Ntafos. On required element testing. Software Engineering, IEEE Trans-
actions on, (6):795–803, 1984.

[267] NVIDIA Corporation. NVIDIA CUDA C programming guide, 2010. Version 3.2.

[268] A Offutt. The coupling effect: fact or fiction. In ACM SIGSOFT Software Engineering
Notes, volume 14, pages 131–140. ACM, 1989.

[269] A Jefferson Offutt. Investigations of the software testing coupling effect. ACM
Transactions on Software Engineering and Methodology (TOSEM), 1(1):5–20, 1992.

[270] A Jefferson Offutt and W Michael Craft. Using compiler optimization techniques to
detect equivalent mutants. Software Testing, Verification and Reliability, 4(3):131–
154, 1994.

[271] A Jefferson Offutt, Ammei Lee, Gregg Rothermel, Roland H Untch, and Christian
Zapf. An experimental determination of sufficient mutant operators. ACM Trans-
actions on Software Engineering and Methodology (TOSEM), 5(2):99–118, 1996.

[272] A Jefferson Offutt and Stephen D Lee. An empirical evaluation of weak mutation.
IEEE Transactions on Software Engineering, 20(5):337–344, 1994.

[273] A Jefferson Offutt and Shaoying Liu. Generating test data from sofl specifications.
Journal of Systems and Software, 49(1):49–62, 1999.

[274] A Jefferson Offutt and Jie Pan. Automatically detecting equivalent mutants and
infeasible paths. Software testing, verification and reliability, 7(3):165–192, 1997.

[275] A Jefferson Offutt, Jie Pan, and Jeffrey M Voas. Procedures for reducing the size of
coverage-based test sets. In Proceedings of the Twelfth International Conference on
Testing Computer Software. Citeseer, 1995.

[276] A Jefferson Offutt, Roy P Pargas, Scott V Fichter, and Prashant K Khambekar. Mu-
tation testing of software using a mimd computer. In in 1992 International Con-
ference on Parallel Processing. Citeseer, 1992.

[277] A Jefferson Offutt and Roland H Untch. Mutation 2000: Uniting the orthogonal. In
Mutation testing for the new century, pages 34–44. Springer, 2001.

[278] Andrew Jefferson Offutt. Automatic test data generation. PhD thesis, Georgia In-
stitute of Technology, 1988.

196 REFERENCES

[279] Jeff Offutt. A mutation carol: Past, present and future. Information and Software
Technology, 53(10):1098–1107, 2011.

[280] Younju Oh, Junbeom Yoo, Sungdeok Cha, and Han Seong Son. Software safety
analysis of function block diagrams using fault trees. Reliability Engineering &
System Safety, 88(3):215–228, 2005.

[281] Open Source Robotics Foundation. Robot Operating System. http://www.ros.
org/, 10 2014. [Online; accessed 16-February-2018].

[282] Dan O’Sullivan and Tom Igoe. Physical computing: sensing and controlling the
physical world with computers. Course Technology Press, 2004.

[283] John D Owens, Mike Houston, David Luebke, Simon Green, John E Stone, and
James C Phillips. Gpu computing. 2008.

[284] Fabio Palomba, Annibale Panichella, Andy Zaidman, Rocco Oliveto, and Andrea
De Lucia. Automatic test case generation: What if test code quality matters? In
Proceedings of the International Symposium on Software Testing and Analysis (IS-
STA), pages 130–141. ACM, 2016.

[285] A. Panichella, F. Kifetew, and P. Tonella. Automated test case generation as a many-
objective optimisation problem with dynamic selection of the targets. IEEE Trans-
actions on Software Engineering, PP(99):1–1, 2017.

[286] Annibale Panichella and Urko Rueda Molina. Java unit testing tool competition -
fifth round. In 10th IEEE/ACM International Workshop on Search-Based Software
Testing (SBST), pages 32–38, 2017.

[287] Mike Papadakis, Christopher Henard, and Yves Le Traon. Sampling program in-
puts with mutation analysis: Going beyond combinatorial interaction testing. In
Software Testing, Verification and Validation (ICST), 2014 IEEE Seventh Interna-
tional Conference on, pages 1–10. IEEE, 2014.

[288] Mike Papadakis, Yue Jia, Mark Harman, and Yves Le Traon. Trivial compiler equiv-
alence: A large scale empirical study of a simple, fast and effective equivalent mu-
tant detection technique. In Software Engineering (ICSE), 2015 IEEE/ACM 37th
IEEE International Conference on, volume 1, pages 936–946. IEEE, 2015.

[289] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark Har-
man. Mutation testing advances: an analysis and survey. In Advances in Comput-
ers, volume 112, pages 275–378. Elsevier, 2019.

[290] Mike Papadakis and Yves Le Traon. Using mutants to locate "unknown" faults. In
7th International Workshop on Mutation Analysis (MUTATION’12), pages 691–700.
IEEE, 2012.

[291] Mike Papadakis and Yves Le Traon. Metallaxis-fl: mutation-based fault localiza-
tion. Software Testing, Verification and Reliability, 25(5-7):605–628, 2015.

REFERENCES 197

[292] Mike Papadakis and Nicos Malevris. Automatic mutation test case generation via
dynamic symbolic execution. In Software reliability engineering (ISSRE), 2010 IEEE
21st international symposium on, pages 121–130. IEEE, 2010.

[293] Mike Papadakis and Nicos Malevris. Automatically performing weak mutation
with the aid of symbolic execution, concolic testing and search-based testing. Soft-
ware Quality Journal, 19(4):691–723, 2011.

[294] Mike Papadakis and Nicos Malevris. Mutation based test case generation via a
path selection strategy. Information and Software Technology, 54(9):915–932, 2012.

[295] Mike Papadakis, Donghwan Shin, Shin Yoo, and Doo-Hwan Bae. Are mutation
scores correlated with real fault detection? a large scale empirical study on the
relationship between mutants and real faults. In 40th International Conference on
Software Engineering, May 27-3 June 2018, Gothenburg, Sweden, 2018.

[296] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-
peau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[297] Goran Petrovic and Marko Ivankovic. State of mutation testing at Google. In Pro-
ceedings of the International Conference on Software Engineering in Practice (ICSE
SEIP), 2018.

[298] Goran Petrovic, Marko Ivankovic, Bob Kurtz, Paul Ammann, and René Just. An
industrial application of mutation testing: Lessons, challenges, and research di-
rections. In 2018 IEEE International Conference on Software Testing, Verification
and Validation Workshops (ICST Workshops), pages 47–53. IEEE, 2018.

[299] Yuhua Qi, Xiaoguang Mao, and Yan Lei. Efficient automated program repair
through fault-recorded testing prioritization. In 2013 IEEE International Confer-
ence on Software Maintenance, pages 180–189. IEEE, 2013.

[300] Xiao Qu, Myra B Cohen, and Gregg Rothermel. Configuration-aware regression
testing: an empirical study of sampling and prioritization. In Proceedings of the
2008 international symposium on Software testing and analysis, pages 75–86. ACM,
2008.

[301] Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Ma-
teo, CA, 1993.

[302] Ragunathan Rajkumar, Insup Lee, Lui Sha, and John Stankovic. Cyber-physical
systems: the next computing revolution. In Design Automation Conference, pages
731–736. IEEE, 2010.

[303] Paolo Rech, Laércio Lima Pilla, Philippe Olivier Alexandre Navaux, and Luigi Carro.
Impact of gpus parallelism management on safety-critical and hpc applications
reliability. In 2014 44th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, pages 455–466. IEEE, 2014.

198 REFERENCES

[304] Alice Richardson. Nonparametric statistics for non-statisticians: A step-by-step
approach by gregory w. corder, dale i. foreman. International Statistical Review,
78(3):451–452, 2010.

[305] José Miguel Rojas, José Campos, Mattia Vivanti, Gordon Fraser, and Andrea Ar-
curi. Combining multiple coverage criteria in search-based unit test generation.
In International Symposium on Search Based Software Engineering, pages 93–108.
Springer, 2015.

[306] Gregg Rothermel, Roland H Untch, Chengyun Chu, and Mary Jean Harrold. Test
case prioritization: An empirical study. In Software Maintenance, 1999.(ICSM’99)
Proceedings. IEEE International Conference on, pages 179–188. IEEE, 1999.

[307] Gregg Rothermel, Roland H Untch, Chengyun Chu, and Mary Jean Harrold. Pri-
oritizing test cases for regression testing. Software Engineering, IEEE Transactions
on, 27(10):929–948, 2001.

[308] RPi-Distro. GPIO Zero. https://github.com/RPi-Distro/python-gpiozero.
[Online; accessed 30-January-2018].

[309] Vladimir V Rubanov and Eugene A Shatokhin. Runtime verification of linux kernel
modules based on call interception. In Int’l Conf. Software Testing, Verification and
Validation (ICST), pages 180–189. IEEE, 2011.

[310] Matthew J Rutherford, Antonio Carzaniga, and Alexander L Wolf. Evaluating test
suites and adequacy criteria using simulation-based models of distributed sys-
tems. Software Engineering, IEEE Transactions on, 34(4):452–470, 2008.

[311] Jason Sanders and Edward Kandrot. CUDA by example: an introduction to general-
purpose GPU programming. Addison-Wesley Professional, 2010.

[312] David Schuler, Valentin Dallmeier, and Andreas Zeller. Efficient mutation testing
by checking invariant violations. In Proceedings of the eighteenth international
symposium on Software testing and analysis, pages 69–80. ACM, 2009.

[313] David Schuler and Andreas Zeller. Javalanche: efficient mutation testing for Java.
In Proc. ESEC/FSE, pages 297–298. ACM, 2009.

[314] David Schuler and Andreas Zeller. (un-) covering equivalent mutants. In 2010
Third International Conference on Software Testing, Verification and Validation,
pages 45–54. IEEE, 2010.

[315] David Schuler and Andreas Zeller. Checked coverage: an indicator for oracle qual-
ity. Software Testing, Verification and Reliability, 23(7):531–551, 2013.

[316] Zary Segall, D Vrsalovic, D Siewiorek, D Ysskin, J Kownacki, J Barton, R Dancey,
A Robinson, and T Lin. Fiat-fault injection based automated testing environment.
In Proc. 18th Int. Symposium on Fault-Tolerant Computing, page 394. IEEE, 1988.

REFERENCES 199

[317] Hossain Shahriar and Mohammad Zulkernine. Music: Mutation-based sql injec-
tion vulnerability checking. In Quality Software, 2008. QSIC’08. The Eighth Inter-
national Conference on, pages 77–86. IEEE, 2008.

[318] Hossain Shahriar and Mohammad Zulkernine. Mutation-based testing of format
string bugs. In High Assurance Systems Engineering Symposium, 2008. HASE 2008.
11th IEEE, pages 229–238. IEEE, 2008.

[319] August Shi, Alex Gyori, Milos Gligoric, Andrey Zaytsev, and Darko Marinov. Bal-
ancing trade-offs in test-suite reduction. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pages 246–256.
ACM, 2014.

[320] August Shi, Tifany Yung, Alex Gyori, and Darko Marinov. Comparing and combin-
ing test-suite reduction and regression test selection. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering, pages 237–247. ACM,
2015.

[321] Donghwan Shin, Eunkyoung Jee, and Doo-Hwan Bae. Empirical evaluation on
fbd model-based test coverage criteria using mutation analysis. In International
Conference on Model Driven Engineering Languages and Systems, pages 465–479.
Springer, 2012.

[322] Akbar Siami Namin, James H Andrews, and Duncan J Murdoch. Sufficient muta-
tion operators for measuring test effectiveness. In Proceedings of the 30th interna-
tional conference on Software engineering, pages 351–360. ACM, 2008.

[323] Y Singh and A Saha. Predicting testability of eclipse: a case study. Journal of Soft-
ware Engineering, 4(2):122–136, 2010.

[324] Ben H Smith and Laurie Williams. On guiding the augmentation of an automated
test suite via mutation analysis. Empirical Software Engineering, 14(3):341–369,
2009.

[325] Davide Spadini, Fabio Palomba, Andy Zaidman, Magiel Bruntink, and Alberto Bac-
chelli. On the relation of test smells to software code quality. In Proceedings of the
International Conference on Software Maintenance and Evolution (ICSME), pages
12–23. IEEE, 2018.

[326] Matt Staats, Gregory Gay, and Mats PE Heimdahl. Automated oracle creation sup-
port, or: how i learned to stop worrying about fault propagation and love mutation
testing. In Proceedings of the 34th International Conference on Software Engineer-
ing, pages 870–880. IEEE Press, 2012.

[327] Matt Staats, Pablo Loyola, and Gregg Rothermel. Oracle-centric test case prioriti-
zation. In Software Reliability Engineering (ISSRE), 2012 IEEE 23rd International
Symposium on, pages 311–320. IEEE, 2012.

200 REFERENCES

[328] Matt Staats, Michael W Whalen, and Mats PE Heimdahl. Better testing through
oracle selection (nier track). In Proceedings of the 33rd International Conference
on Software Engineering, pages 892–895. ACM, 2011.

[329] J A Stankovic, I Lee, A Mok, and R Rajkumar. Opportunities and obligations for
physical computing systems. Computer, 38(11):23–31, 2005.

[330] Matthew Stephan, Manar H Alalfi, and James R Cordy. Towards a taxonomy for
Simulink model mutations. In Software Testing, Verification and Validation Work-
shops (ICSTW), pages 206–215. IEEE, 2014.

[331] Matthew Stephan and James R Cordy. Model clone detector evaluation using mu-
tation analysis. In ICSME, pages 633–638, 2014.

[332] Sam S Stone, Justin P Haldar, Stephanie C Tsao, BP Sutton, Z-P Liang, et al. Accel-
erating advanced mri reconstructions on gpus. Journal of parallel and distributed
computing, 68(10):1307–1318, 2008.

[333] Joanna Strug and Barbara Strug. Machine learning approach in mutation testing.
In IFIP International Conference on Testing Software and Systems, pages 200–214.
Springer, 2012.

[334] Ahyoung Sung, Byoungju Choi, and Seokkyoo Shin. An interface test model for
hardware-dependent software and embedded os api of the embedded system.
Computer Standards & Interfaces, 29(4):430–443, 2007.

[335] Pushpa R Suri and Harsha Singhani. Object oriented software testability survey
at designing and implementation phase. International Journal of Science and Re-
search, 4(4):3047–3053, 2015.

[336] Hiroyuki Takizawa and Hiroaki Kobayashi. Hierarchical parallel processing of
large scale data clustering on a pc cluster with gpu co-processing. The Journal
of Supercomputing, 36(3):219–234, 2006.

[337] Texas Instruments. 74HC74 D flip-flop Data Sheet. http://www.utm.edu/
staff/leeb/logic/74ls74.pdf. [Online; accessed 14-June-2017].

[338] Texas Instruments. 74LS107 JK flip-flop Data Sheet. http://www.utm.edu/
staff/leeb/logic/74ls107.pdf. [Online; accessed 14-June-2017].

[339] Sameer Tilak, Nael B Abu-Ghazaleh, and Wendi Heinzelman. A taxonomy of wire-
less micro-sensor network models. ACM SIGMOBILE Mobile Computing and Com-
munications Review, 6(2):28–36, 2002.

[340] Ayse Tosun and Ayse Bener. Reducing false alarms in software defect prediction
by decision threshold optimization. In Proceedings of the 2009 3rd International
Symposium on Empirical Software Engineering and Measurement, pages 477–480.
IEEE Computer Society, 2009.

REFERENCES 201

[341] Wei-Tek Tsai, Lian Yu, Feng Zhu, and Ray Paul. Rapid embedded system testing
using verification patterns. IEEE software, pages 68–75, 2005.

[342] Javier Tuya, Ma José Suárez-Cabal, and Claudio De La Riva. Mutating database
queries. Information and Software Technology, 49(4):398–417, 2007.

[343] Javier Tuya, María José Suárez-Cabal, and Claudio De La Riva. Full predicate cover-
age for testing sql database queries. Software Testing, Verification and Reliability,
20(3):237–288, 2010.

[344] Roland Untch, A Jefferson Offutt, and Mary Jean Harrold. Mutation testing us-
ing mutant schemata. In Proc. International Symposium on Software Testing and
Analysis (ISSTA), pages 139–148, 1993.

[345] Roland H Untch. Mutation-based software testing using program schemata. In
Proceedings of the 30th annual Southeast regional conference, pages 285–291. ACM,
1992.

[346] Arie van Deursen. Software Testing in 2048. https://speakerdeck.com/
avandeursen/software-testing-in-2048, 1 2016. [Online; accessed 13-Sep-
2016].

[347] Oscar Luis Vera-Pérez, Benjamin Danglot, Martin Monperrus, and Benoit Baudry.
A comprehensive study of pseudo-tested methods. Empirical Software Engineer-
ing, pages 1–31, 2017.

[348] P Vilela, M Machado, and WE Wong. Testing for security vulnerabilities in soft-
ware. Software Engineering and Applications, 2002.

[349] Auri Marcelo Rizzo Vincenzi, Jose Carlos Maldonado, Ellen Francine Barbosa, and
Marcio Eduardo Delamaro. Unit and integration testing strategies for c programs
using mutation. Software Testing, Verification and Reliability, 11(4):249–268, 2001.

[350] Auri Marcelo Rizzo Vincenzi, Elisa Yumi Nakagawa, José Carlos Maldonado,
Márcio Eduardo Delamaro, and Roseli Aparecida Francelin Romero. Bayesian-
learning based guidelines to determine equivalent mutants. International Journal
of Software Engineering and Knowledge Engineering, 12(06):675–689, 2002.

[351] Willem Visser. What makes killing a mutant hard. In Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering, pages
39–44. ACM, 2016.

[352] Willem Visser, Klaus Havelund, Guillaume Brat, SeungJoon Park, and Flavio Lerda.
Model checking programs. Automated Software Engineering, pages 203–232, 2003.

[353] Mattia Vivanti, Andre Mis, Alessandra Gorla, and Gordon Fraser. Search-based
data-flow test generation. In Software Reliability Engineering (ISSRE), 2013 IEEE
24th International Symposium on, pages 370–379. IEEE, 2013.

202 REFERENCES

[354] Jeffrey M. Voas. Pie: A dynamic failure-based technique. IEEE Transactions on
software Engineering, 18(8):717–727, 1992.

[355] Jeffrey M. Voas and Keith W Miller. Software testability: The new verification. IEEE
software, 12(3):17–28, 1995.

[356] Anneliese von Mayrhauser, Michael Scheetz, Eric Dahlman, and Adele E Howe.
Planner based error recovery testing. In Software Reliability Engineering, 2000.
ISSRE 2000. Proceedings. 11th International Symposium on, pages 186–195. IEEE,
2000.

[357] Jan Wen Voung, Ranjit Jhala, and Sorin Lerner. Relay: static race detection on
millions of lines of code. In Proc. of the Joint Meeting of the European Software
Engineering Conference and the Int’l Symp. on Software Engineering (ESEC/FSE),
pages 205–214. ACM, 2007.

[358] KS Wah. Fault coupling in finite bijective functions. Software Testing, Verification
and Reliability, 5(1):3–47, 1995.

[359] KS Wah. A theoretical study of fault coupling. Software testing, verification and
reliability, 10(1):3–45, 2000.

[360] KS How Tai Wah. An analysis of the coupling effect i: single test data. Science of
Computer Programming, 48(2):119–161, 2003.

[361] Xinming Wang, Shing-Chi Cheung, Wing Kwong Chan, and Zhenyu Zhang. Tam-
ing coincidental correctness: Coverage refinement with context patterns to im-
prove fault localization. In Proceedings of the 31st International Conference on
Software Engineering, pages 45–55. IEEE Computer Society, 2009.

[362] Michael Whalen, Gregory Gay, Dongjiang You, Mats PE Heimdahl, and Matt
Staats. Observable modified condition/decision coverage. In Software Engineer-
ing (ICSE), 2013 35th International Conference on, pages 102–111. IEEE, 2013.

[363] David A. Wheeler. SLOCCount. https://www.dwheeler.com/sloccount/. [On-
line; accessed 13-March-2019].

[364] Rudolf Wille. Formal concept analysis as mathematical theory of concepts and
concept hierarchies. In Formal concept analysis, pages 1–33. Springer, 2005.

[365] Claes Wohlin. Guidelines for snowballing in systematic literature studies and
a replication in software engineering. In Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering, page 38. ACM,
2014.

[366] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis.
Chemometrics and intelligent laboratory systems, 2(1-3):37–52, 1987.

[367] W Eric Wong and Aditya P Mathur. Reducing the cost of mutation testing: An
empirical study. Journal of Systems and Software, 31(3):185–196, 1995.

REFERENCES 203

[368] Martin R Woodward. Mutation testing-an evolving technique. In Software Testing
for Critical Systems, IEE Colloquium on, pages 3–1. IET, 1990.

[369] Martin R. Woodward, Michael A. Hennell, and David Hedley. A measure of con-
trol flow complexity in program text. IEEE Transactions on Software Engineering,
(1):45–50, 1979.

[370] Christopher Wright. Mutation analysis of relational database schemas. PhD thesis,
University of Sheffield, 2015.

[371] Xiaoyuan Xie, Joshua WK Ho, Christian Murphy, Gail Kaiser, Baowen Xu, and
Tsong Yueh Chen. Testing and validating machine learning classifiers by meta-
morphic testing. Journal of Systems and Software, 84(4):544–558, 2011.

[372] Dianxiang Xu and Junhua Ding. Prioritizing state-based aspect tests. In 2010 Third
International Conference on Software Testing, Verification and Validation, pages
265–274. IEEE, 2010.

[373] Xiangjuan Yao, Mark Harman, and Yue Jia. A study of equivalent and stubborn
mutation operators using human analysis of equivalence. In Proceedings of the
36th International Conference on Software Engineering, pages 919–930. ACM, 2014.

[374] Keun Soo Yim, Cuong Pham, Mushfiq Saleheen, Zbigniew Kalbarczyk, and Ravis-
hankar Iyer. Hauberk: Lightweight silent data corruption error detector for gpgpu.
In 2011 IEEE International Parallel & Distributed Processing Symposium, pages
287–300. IEEE, 2011.

[375] Hoijin Yoon and Byoungju Choi. Effective test case selection for component cus-
tomization and its application to enterprise javabeans. Software Testing, Verifica-
tion and Reliability, 14(1):45–70, 2004.

[376] Yuan Zhan and John A Clark. Search-based mutation testing for simulink models.
In Proceedings of the 7th annual conference on Genetic and evolutionary computa-
tion, pages 1061–1068. ACM, 2005.

[377] Feng Zhang, Quan Zheng, Ying Zou, and Ahmed E Hassan. Cross-project defect
prediction using a connectivity-based unsupervised classifier. In Proceedings of
the 38th International Conference on Software Engineering, pages 309–320. ACM,
2016.

[378] J. Zhang, L. Zhang, M. Harman, D. Hao, Y. Jia, and L. Zhang. Predictive mutation
testing. IEEE Transactions on Software Engineering, pages 1–1, 2018.

[379] Jie Zhang, Ziyi Wang, Lingming Zhang, Dan Hao, Lei Zang, Shiyang Cheng, and
Lu Zhang. Predictive mutation testing. In Proceedings of the 25th International
Symposium on Software Testing and Analysis, pages 342–353. ACM, 2016.

[380] Lingming Zhang, Darko Marinov, and Sarfraz Khurshid. Faster mutation testing
inspired by test prioritization and reduction. In Proc. Int’l. Symp. on Software Test-
ing and Analysis (ISSTA), pages 235–245. ACM, 2013.

204 REFERENCES

[381] Lingming Zhang, Darko Marinov, Lu Zhang, and Sarfraz Khurshid. An empiri-
cal study of junit test-suite reduction. In Software Reliability Engineering (ISSRE),
2011 IEEE 22nd International Symposium on, pages 170–179. IEEE, 2011.

[382] Lingming Zhang, Tao Xie, Lu Zhang, Nikolai Tillmann, Jonathan De Halleux, and
Hong Mei. Test generation via dynamic symbolic execution for mutation testing.
In Software Maintenance (ICSM), 2010 IEEE International Conference on, pages 1–
10. IEEE, 2010.

[383] Qiushuang Zhang and Ian G Harris. A data flow fault coverage metric for validation
of behavioral hdl descriptions. In Proc. Int’l Conf on Computer-aided design, pages
369–373. IEEE, 2000.

[384] Yucheng Zhang and Ali Mesbah. Assertions are strongly correlated with test suite
effectiveness. In Proceedings of the 2015 10th Joint Meeting on Foundations of Soft-
ware Engineering, pages 214–224. ACM, 2015.

[385] YuMing Zhou, Hareton Leung, QinBao Song, JianJun Zhao, HongMin Lu, Lin Chen,
and BaoWen Xu. An in-depth investigation into the relationships between struc-
tural metrics and unit testability in object-oriented systems. Science china infor-
mation sciences, 55(12):2800–2815, 2012.

[386] Hong Zhu, Patrick AV Hall, and John HR May. Software unit test coverage and
adequacy. Acm computing surveys (csur), 29(4):366–427, 1997.

[387] Qianqian Zhu. Mutation testing Tools. https://zenodo.org/badge/
latestdoi/122769075. [Online; accessed 24-February-2018].

[388] Qianqian Zhu. MutPhy GitHub Repository. https://zenodo.org/badge/
latestdoi/136980504. [Online; accessed 11-June-2018].

[389] Qianqian Zhu. Replicate Package. https://doi.org/10.5281/zenodo.
3484715. [Online; accessed 16-December-2019].

[390] Qianqian Zhu. GitHub Repository for Mutation Observer. https://zenodo.org/
badge/latestdoi/147203995, 2019. [Online; accessed 18-September-2019].

[391] Qianqian Zhu, Annibale Panichella, and Andy Zaidman. Speeding-up mutation
testing via data compression and state infection. In 2017 IEEE International Con-
ference on Software Testing, Verification and Validation Workshops (ICSTW), pages
103–109. IEEE, 2017.

[392] Qianqian Zhu, Annibale Panichella, and Andy Zaidman. An investigation of com-
pression techniques to speed up mutation testing. In 2018 IEEE 11th International
Conference on Software Testing, Verification and Validation (ICST), pages 274–284.
IEEE, 2018.

[393] Qianqian Zhu, Annibale Panichella, and Andy Zaidman. A systematic literature
review of how mutation testing supports quality assurance processes. Software
Testing, Verification and Reliability, 28(6):e1675, 2018. e1675 stvr.1675.

REFERENCES 205

[394] Qianqian Zhu and Andy Zaidman. Mutation testing for physical computing. In
2018 IEEE International Conference on Software Quality, Reliability and Security
(QRS), pages 289–300. IEEE, 2018.

[395] Qianqian Zhu and Andy Zaidman. Massively parallel, highly efficient, but what
about the test suite quality? applying mutation testing to gpu programs. In 2020
IEEE 13th International Conference on Software Testing, Validation and Verifica-
tion (ICST), pages 209–219. IEEE, 2020.

CURRICULUM VITÆ

Qianqian ZHU

23-12-1990 Born in Wenzhou, Zhejiang Province, China.

EDUCATION
2015.11-2019.11 Ph.D. in Software Engineering

Delft University of Technology, Netherlands
Promotors: Prof. Dr. Andy Zaidman & Prof. Dr. Arie van Deursen
Co-promotor: dr. Annibale Panichella

2013.10-2014.10 M.Sc. in Computer Science
Imperial College London, UK
Grade: Distinction & TOP 3rd

2009.09-2013.06 B.Eng. in Biosystems Engineering
Zhejiang University, China
Grade: 4.11/5.0 & TOP 10%

EXPERIENCE
2015-2019 Reviewer

JSS, STVR, ICST, ICSE, SCAM, SANER

2019, 2020 Program committee member
Mutation Testing Workshop

2018 Web chair
The 15th International Conference on Mining Software Repositories (MSR 2018)

2017.04-2017.07 Teaching Assistant
Software Testing and Quality Engineering, prof. dr. A. van Deursen

2014.11-2015.02 Data Scientist
Go Capture, Shanghai, China

2009-2010 Steering committee member
College Students Association Union of Zhejiang University

207

LIST OF PUBLICATIONS

5. Qianqian Zhu and Andy Zaidman, Massively Parallel, Highly Efficient, but What About the
Test Suite Quality? Applying Mutation Testing to GPU Programs, Proceedings of the 11th
International Conference on Software Testing, Verification, and Validation (ICST), Porto,
Portugal, 2020

4. Qianqian Zhu and Andy Zaidman, Mutation Testing for Physical Computing, The 18th IEEE
International Conference on Software Quality, Reliability, and Security (QRS), Lisbon, Por-
tugal, 2018.

3. Qianqian Zhu, Annibale Panichella and Andy Zaidman, An Investigation of Compression
Techniques to Speed up Mutation Testing, Proceedings of the 11th International Conference
on Software Testing, Verification, and Validation (ICST), Västerås, Sweden, 2018.

2. Qianqian Zhu, Annibale Panichella and Andy Zaidman, Speeding-Up Mutation Testing via
Data Compression and State Infection, 2017 IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW), Tokyo, 2017, pp. 103-109.

1. Qianqian Zhu, Annibale Panichella and Andy Zaidman, A systematic literature review of
how mutation testing supports quality assurance processes, Software Testing Verification Re-
liability 2018;28:e1675.

209

