
How to Kill Them All: An Exploratory Study
on the Impact of Code Observability on
Mutation Testing
Qianqian Zhu, Andy Zaidman, and Annibale Panichella

Software Engineering Research Group, Delft University of Technology, Van Mourik
Broekmanweg 6, 2628 XE Delft, The Netherlands

Corresponding author:
Qianqian Zhu

Email address: qianqian.zhu@tudelft.nl

ABSTRACT

Mutation testing has been well-known for its efficacy to assess test quality, and recently it has started to
be applied in industry as well. However, what should a developer do when confronted with a low mutation
score? Should the test suite be reinforced to increase the mutation score, or should the production
code be improved as well, to make the creation of better tests possible? In this paper, we investigate
whether testability and observability metrics are correlated with the mutation score on six open source
Java projects. We observe a correlation between observability metrics and the mutation score, e.g., test
directness seems to be an essential factor. Based on our insights from the correlation study, we propose
a number of “mutation score anti-patterns”, which enable software engineers to refactor their existing
code to be able to improve the mutation score. In doing so, we observe that relatively simple refactoring
operations enable an improvement in the mutation score.

1 INTRODUCTION
Mutation testing has been a very active research field since the 1970s as a technique to evaluate the quality
of test suites [1]. Recent advances have made it possible for mutation testing to be used in industry [2].
For example, PIT/PiTest [3] has been adopted by several companies, such as The Ladders and British Sky
Broadcasting [4]. Furthermore, Google [5] has integrated mutation testing with the code review process
for around 6000 software engineers.

As mutation testing gains traction in industry, a better understanding of the mutation score (the
outcome of mutation testing) becomes essential. This is because once mutation testing is adopted, project
managers would consider the mutation score as an important metric to monitor testing activities. However,
in our previous study, we have established that certain mutants could be killed only after refactoring the
production code to increase the observability of state changes [6]. This leads us to our hypothesis that
code quality plays an essential role in mutation testing. More specifically, we conjecture that software
testability and code observability are two key factors. Testability is defined as the “attributes of software
that bear on the effort needed to validate the software product” [7, 8]. Given our context, an important part
of testability is observability, which is a measure of how well internal states of a system can be inferred,
usually through the values of its external outputs [9]. More specifically, observability indicates how a
failure that is triggered propagates through the code and becomes observable to either the tester or an
automated comparator [10].

Inspired by the work of Bruntink and van Deursen [8], who have explored the relation between nine
object-oriented metrics and testability, we investigate the relationhip between code quality metrics and
mutation testing. Our first three research questions steer our investigation:

RQ1 What is the relation between testability metrics and the mutation score?

RQ2 What is the relation between observability metrics and the mutation score?

1

RQ3 What is the relation between the combination of testability and observability metrics and the
mutation score?

After investigating the relationship between testability, observability, and mutation testing, we still
lack insight into how these relationships can be made actionable for software engineers in practice. That
is why, based on the observations from RQ1-RQ3, we define anti-patterns or indicators that software
engineers can apply to their code to ensure that mutants can be killed. This leads us to the next research
question:

RQ4 To what extent does the refactoring of anti-patterns based on testability and observability help in
improving the mutation score?

In terms of the methodology that we follow in our study, for RQ1-RQ3, we use statistical analysis
on open-source Java projects to investigate the relationship between testability, observability, and the
mutation score. For RQ4, we perform a case study involving 16 code fragments to investigate whether
the refactoring of anti-patterns improves the mutation score.

2 BACKGROUND
In this section, we briefly introduce basic concepts and related work on mutation testing and testability
metrics.

2.1 Mutation Testing
Mutation testing is defined by Jia and Harman [1] as a fault-based testing technique which provides a
testing criterion called the mutation adequacy score. This score can be used to measure the effectiveness
of a test suite regarding its ability to detect faults [1]. The principle of mutation testing is to introduce
syntactic changes into the original program to generate faulty versions (called mutants) according to
well-defined rules (mutation operators) [11]. The benefits of mutation testing have been extensively
investigated and can be summarised as [12]: 1) having better fault exposing capability compared to other
test coverage criteria [13, 14, 15], 2) being an excellent alternative to real faults and providing a good
indication of the fault detection ability of a test suite [16, 17].

Researchers have actively investigated mutation testing for decades (evidenced by the extensive
survey [11, 1, 18, 12]). Recently, it has started to attract attention from industry [2]. In part, this is due
to the growing awareness of the importance of testing in software development [19]. Code coverage,
the most common metric to measure test suite effectiveness, has seen its limitations being reported in
numerous studies (e.g. [13, 14, 15, 20]). Using structural coverage metrics alone might be misleading
because in many cases statements might be covered, but their consequences might not be asserted [20].
Another factor is that a number of well-developed open-source mutation testing tools (e.g., PIT/PiTest [3]
and Mull [21]) have contributed to mutation testing being applied in industrial environments [2, 5, 4].

However, questions still exist about mutation testing, especially regarding the usefulness of a mu-
tant [22]. The majority of the mutants generated by existing mutation operators are equivalent, trivial
and redundant [23, 22, 24, 25, 26], which reduces the efficacy of the mutation score. If a class has a high
mutation score while most mutants generated are trivial and redundant, the high mutation score does not
promise high test effectiveness. A better understanding of mutation score and mutants is thus urgent.

To address this knowledge gap, numerous studies have investigated how useful mutants are. Example
studies include mutant subsumption [23], stubborn mutants [27], and real-fault coupling [17, 25]. These
studies paid attention to the context and types of mutants as well as the impact of the test suite, while
the impact of production code quality has rarely been investigated. We have seen how code quality
can influence how hard it is to test [8] (called software testability [28]), and since mutation testing can
generally be considered as “testing the tests,” production code quality could also impact mutation testing.
Due to the lack of insights into how code quality affects the efforts needed for mutation testing, we conduct
this exploratory study. Our study can help researchers and practitioners deepen their understanding of the
mutation score, which is generally related to test suite quality and mutant usefulness.

2.2 Existing Object-Oriented Metrics for Testability
The notion of software testability dates back to 1991 when Freedman [28] formally defined observability
and controllability in software domain. Voas [29] proposed a dynamic technique coined propagation,

2/26

Table 1. Summary of Method-Level Code Quality Metrics

Abbr. Full name Description

COMP Cyclomatic Complexity McCabes cyclomatic Complexity for the method
NOA Number of Arguments The number of Arguments
NOCL Number of Comments The number of Comments associated with the method
NOC Number of Comment Lines The number of Comment Lines associated with the method
VDEC Variable Declarations The number of variables declared in the method
VREF Variable References The number of variables referenced in the method
NOS Number of Java statements The number of statements in the method
NEXP Number of expressions The number of expressions in the method
MDN Max depth of nesting The maximum depth of nesting in the method
HLTH Halstead length The Halstead length of the metric (one of the Halstead Met-

rics)
HVOC Halstead vocabulary The Halstead vocabulary of the method (one of the Halstead

Metrics)
HVOL Halstead volume The Halstead volume of the method (one of the Halstead Met-

rics)
HDIF Halstead difficulty The Halstead difficulty of the method (one of the Halstead

Metrics)
HEFF Halstead effort The Halstead effort of the method (one of the Halstead Met-

rics)
HBUG Halstead bugs The Halstead prediction of the number of bugs in the method

(one of the Halstead Metrics)
TDN Total depth of nesting The total depth of nesting in the method
CAST Number of casts The number of class casts in the method
LOOP Number of loops The number of loops (for, while) in the method
NOPR Number of operators The total number of operators in the method
NAND Number of operands The total number of operands in the method
CREF Number of classes referenced The classes referenced in the method
XMET Number of external methods The external methods called by the method
LMET Number of local methods The number of methods local to this class called by this

method
EXCR Number of exceptions referenced The number of exceptions referenced by the method
EXCT Number of exceptions thrown The number of exceptions thrown by the method
MOD Number of modifiers The number of modifiers (public, protected, etc.) in method

declaration
NLOC Lines of Code The number of lines of code in the method

infection and execution (PIE) analysis for statistically estimating the program’s fault sensitivity. More
recently, researchers have aimed to make further understandings of testability by using statistical methods
to predict testability based on various code metrics. Influential works include Bruntink and van Deursen [8]
that they explored the relationship between nine object-oriented metrics and testability. To explore the
relation between testability and mutation score (RQ1), we first need collect a number of existing object-
oriented metrics which have been proposed in the literature. In total, we collect 64 code quality metrics,
including both class-level and method-level metrics that have been the most widely used.

We present a brief summary of the 64 metrics in Table 1 (method-level) and Tables 2–3 (class-level).
These metrics have been computed using a static code analysis tool provided by JHawk [30].

3 MUTANT OBSERVABILITY
To explore the relation between observability and mutation score (RQ2), we first need a set of metrics
to quantify mutant observability. The concept of observability originates from dynamical systems and
automata [31]. Whalen et al. [32] formally defined observability as follows: an expression in a program is
observable in a test case if the value of an expression is changed, leaving the rest of the program intact,
and the output of the system is changed correspondingly. If there is no such a value, then the expression is
not observable for that test.

According to Whalen et al. [32]’s definition of observability, we consider that mutant observability
comprises two perspectives: that of production code and that of the test case. To better explain these
two perspectives, let us consider the example in Listing 1 from project jfreechart-1.5.0 and its
corresponding test. This method is to set the line paint for LegendItem object. There is one mutant
in Line 2 that removes call to org.jfree.chart.util.Args::null-NotPermitted. This mutant is
not killed by testSerialization. Looking at the observability of this mutant from the production
code perspective, we can see that setLinePaint method is void; thus, this mutant is hard to detect
because there is no return value for the test case to assert. From the test case perspective, although
testSerialization invokes method setLinePaint in Line 12, no proper assertion statements are used

3/26

Table 2. Summary of Class-Level Code Quality Metrics (1)

Abbr. Full name Description

NOMT Number of methods The number of methods in the class (WMC - one of the Chi-
damber and Kemerer metrics)

LCOM Lack of Cohesion of Methods The value of the Lack of Cohesion of Methods metric for the
class. This uses the LCOM* (or LCOM5) calculation. (one
of the Chidamber and Kemerer metrics)

TCC Total Cyclomatic Complexity The total McCabes cyclomatic Complexity for the class
AVCC Average Cyclomatic Complexity The average McCabes cyclomatic Complexity for all of the

methods in the class
MAXCC Maximum Cyclomatic Complexity The maximum McCabes cyclomatic Complexity for all of the

methods in the class
NOS Number of Java statements The number of statements in the class
HLTH Cumulative Halstead length The Halstead length of the code in the class plus the total of

all the Halstead lengths of all the methods in the class
HVOL Cumulative Halstead volume The Halstead volume of the code in the class plus the total of

all the Halstead volumes of all the methods in the class
HEFF Cumulative Halstead effort The Halstead effort of the code in the class plus the total of

all the Halstead efforts of all the methods in the class
HBUG Cumulative Halstead bugs The Halstead prediction of the number of bugs in the code of

the class and all of its methods
UWCS Un Weighted class Size The Unweighted Class Size of the class
NQU Number of Queries The number of methods in the class that are queries (i.e. that

return a value)
NCO Number of Commands The number of methods in the class that are commands (i.e.

that do not return a value)
EXT External method calls The number of external methods called by the class and by

methods in the class
LMC Local method calls The number of methods called by the class and by methods

in the class
HIER Hierarchy method calls The number of local methods called by the class and by meth-

ods in the class that are defined in the hierarchy of the class
INST Instance Variables The number of instance variables declared in the class
MOD Number of Modifiers The number of modifiers (public, protected etc) applied to the

declaration of the class
INTR Number of Interfaces The number of interfaces implemented by the class

Table 3. Summary of Class-Level Code Quality Metrics (2)

Abbr. Full name Description

PACK Number of Packages imported The number of packages imported by the class
RFC Response for Class The value of the Response For Class metric for the class.

(One of the Chidamber and Kemerer metrics)
MPC Message passing The value of the Message passing metric for the class
CBO Coupling between objects The value of the Coupling Between Objects metric for the

class. (One of the Chidamber and Kemerer metrics)
FIN Fan In The value of the Fan In (Afferent coupling (Ca)) metric for

the class
FOUT Fan Out The value of the Fan Out (Efferent coupling (Ce)) metric for

the class
R-R Reuse Ratio The value of the Reuse Ratio for the class
S-R Specialization Ratio The value of the Specialization Ratio for the class
NSUP Number of Superclasses The number of superclasses (excluding Object) in the hierar-

chy of the class
NSUB Number of Subclasses The number of subclasses below the class in the hierarchy.

(NOC - one of the Chidamber and Kemerer metrics)
MI Maintainability Index The Maintainability Index for the class, including the

adjustment for comments(including comments)
MINC Maintainability Index The Maintainability Index for the class without any

adjustment for comments(not including comments)
COH Cohesion The value of the Cohesion metric for the class
DIT Depth of Inheritance Tree The value of the Depth of Inheritance Tree metric for the class.

(One of the Chidamber and Kemerer metrics)
LCOM2 Lack of Cohesion of Methods The value of the Lack of Cohesion of Methods (2) metric for

the class.This uses the LCOM2 calculation. (One of the
Chidamber and Kemerer metrics)

(variant 2)

CCOM Number of Comments The number of Comments associated with the class
CCML Number of Comment Lines The number of Comment Lines associated with the class
NLOC Lines of Code The number of lines of code in the class and its methods

to examine the changes of Args.nullNotPermitted() which is used to check that the object paint is
not null.

Starting with two angles of mutant observability, we come up with a set of the mutant observability
metrics. First of all, the return type of the method. As discussed in Listing 1, in a void method is hard

4/26

1public void setLinePaint(Paint paint) {
2Args.nullNotPermitted(paint , "paint");
3this.linePaint = paint;
4}
5
6@Test
7public void testSerialization () {
8LegendItem item1 = new LegendItem("Item", "Description",
9"ToolTip", "URL",
10new Rectangle2D.Double (1.0, 2.0, 3.0, 4.0), new GradientPaint(
115.0f, 6.0f, Color.BLUE , 7.0f, 8.0f, Color.GRAY));

12item1. setLinePaint(new GradientPaint (1.0f, 2.0f, Color.WHITE , 3.0f,

134.0f, Color.RED));
14LegendItem item2;
15item2 = (LegendItem) TestUtils.serialised(item1);
16assertEquals(item1 , item2);
17}

Listing 1. Example of method org.jfree.chart.LegendItem:setLinePaint and its test

1private static String getMantissa(final String str) {
2return getMantissa(str , str.length ());
3}

Listing 2. Example of method getMantissa in class NumberUtils

to observe the changing states inside the method because there is no return value for test cases to assert.
Accordingly, we design two metrics, is void and non void percent (shown in 1st and 2nd rows in
Table 5). Besides these two, a void method mostly changes the field(s) of the class it belongs to. A
workaround to test a void method is to invoke getters. So getter percentage (shown in 3rd row in
Table 5) is proposed to complements is void.

Second, the access control modifiers. Let us consider the example in Listing 2. The method
getMantissa in class NumberUtils returns the mantissa of the given number. This method has only one
mutant: the return value is replaced with “if (x != null) null else throw new RuntimeException”.
This mutant should be easy to detect given an input of either a legal number (the return value cannot be
null) or a null string (throw an exception). The reason this “trivial” mutant is not detected is because the
method getMantissa is private. The access control modifier private makes it impossible to directly test
the method getMantissa, for this method is only visible to methods from class NumberUtils. To test
this method, the test case must first invoke a method that calls method getMantissa. From this case, we
observe that access control modifiers influence the visibility of the method, so as to play a significant
role in mutant observability. Thereby, we take access control modifiers into account to quantify mutant
observability, where we design is public and is static (shown in 4th and 5th rows in Table 5).

Third, fault masking. We observe that mutants generated in certain locations are more likely to be
masked [33], i.e., the state change cannot propagate to the output of the method. The first observation is
the mutants in a nested class, thus we come up with is nested (in 6th row in Table 5). The next case is
the mutants generated inside nested conditions and loops, where we define nested depth (shown in 7th
row in Table 5) and a set of metrics to quantify the conditions and loops (shown in 8th - 13rd rows in
Table 5). The last observation is the mutants in a long method, thus we design method length (shown in
14th row in Table 5).

Next, test directness. For instance, Listing 3 shows the class Triple, which is an abstract imple-
mentation defining the basic functions of the object and that consists of three elements. It refers to the
elements as “left”, “middle” and “right”. The method hashCode returns the hash code of the object. Six
mutants are generated for the method hashCode in class Triple. Table 4 summarises all the mutants
from Listing 3. Of those six mutants, only Mutant 1 is killed, and the other mutants are not equivalent.
Through further investigation of method hashCode and its test class, we found that although this method
has 100% coverage by the test suite, there is no direct test for this method. A direct test would mean
that the method is directly invoked by the test methods [34]. The direct test is useful because it allows to

5/26

1@Override
2public int hashCode () {
3return (getLeft () == null ? 0 : getLeft ().hashCode ()) ˆ
4(getMiddle () == null ? 0 : getMiddle ().hashCode ()) ˆ
5(getRight () == null ? 0 : getRight ().hashCode ());
6}

Listing 3. Example of method hashCode in class Triple

Table 4. Summary of mutants from Listing 3

ID Line No. Mutator Results

1 3 negated conditional Killed
2 3 replaced return of integer sized value with (x == 0 ? 1 : 0) Survived
3 3 Replaced XOR with AND Survived
4 4 negated conditional Survived
5 4 Replaced XOR with AND Survived
6 5 negated conditional Survived

directly control the input data plus to directly assert the output of a method. This example shows that
test directness has a considerable impact on mutation testing, which denotes the test case angle of mutant
observability. Therefore, we design two metrics, direct test no. and test distance (shown in 15th
and 16th row in Table 5), to quantify test directness. These two metrics represent the test case perspective
of mutant observability.

The last but not the least, the assertion. As discussed in Listing 1, we observe that mutants without
appropriate assertions in place cannot be killed, as a prerequisite to killing a mutant is to have the
tests fail in the mutated program. Accordingly, we come up with three metrics to quantify assertions
in the method, assertion no., assertion-McCabe Ratio and assertion density (shown in 17th -
19th rows in Table 5). These three metrics are proposed based on the test case perspective of mutant
observability.

To sum up, Table 5 presents all the mutant observability metrics we propose, where we display the
name, the definition of each metric and the category.

4 EXPERIMENTAL SETUP
To examine our conjectures, we conduct an experiment using six open-source projects. We sum up all the
research questions we have proposed in Section 1:

• RQ1: What is the relation between testability metrics and the mutation score?

• RQ2: What is the relation between observability metrics and the mutation score?

• RQ3: What is the relation between the combination of testability and observability metrics and the
mutation score?

• RQ4: To what extent does refactoring of anti-patterns based on testability and observability help
in improving the mutation score?

4.1 Subject Systems
We use six systems publicly available on GitHub in this experiment. Table 6 summarises the main
characteristics of the selected projects. These systems are selected because they have been widely used in
the research domain [35]. All systems are written in Java, and tested by means of JUnit. The granularity
of our analysis is at method-level.

The results of the mutants that are killable for all of the subjects are shown in Columns 7-8 of Table 6.
Figure 1a shows the distribution of mutation score among all methods. The majority of the mutation
scores are either 0 or 1. Together with Figure 1b, we can see that the massive number of 0 and 1 are due
to the low mutant number per method. Most methods only have less than 5 mutants.

6/26

Table 5. Summary of mutant observability metrics

Name Definition Category

1 is void whether the return value of the method is void or
not return type2 non void percent the percent of non-void methods in the class(class-level)

3 getter percentage the percentage of getter methods in the class1

4 is public whether the method is public or not access control modifiers5 is static whether the method is static or not

6 is nested whether the method is located in a nested class or
not

fault masking

(class-level)
7 nested depth the maximum number of nested depth (MDN from

Section 2.2
8 (cond) the number of conditions (if, if-else and

switch) in the method
9 (cond(cond)) the number of nested conditions (e.g. if{if{}})

in the method
10 (cond(loop)) the number of nested condition-loops (e.g.

if{for{}}) in the method
11 (loop) the number of loops (for, while and do-while) in

the method (LOOP from Section 2.2)
12 (loop(cond)) the number of nested loop-conditions (e.g.

for{if{}}) in the method.
13 (loop(loop)) the number of nested loop-conditions (e.g.

for{for{}}) in the method.
14 method length the number of lines of code in the method (NLOC

from Section 2.2)

15 direct test no. the number of methods directly invoked by the test
methods2 test directness

16 test distance the shortest method call sequence required to in-
voke the method in test methods3

17 assertion no. the number of assertions in direct tests assertion18 assertion-McCabe Ratio the ratio between the total number of assertions in
direct tests and the McCabe Cyclomatic complex-
ity

19 assertion density the ratio between the total number of assertions in
direct tests and the lines of code in direct tests

1A getter method must follow three patterns [39]: (1) must be public; (2) has no arguments and its return type must
be something other than void. (3) have naming conventions: the name of a getter method begins with “get” followed
by an uppercase letter.
2If the method is not directly tested, then the direct test no. is 0.
3If the method is directly tested, then the distance is 0. The maximum distance is set Integer.MAX VALUE in Java
which means there is no method call sequence that can reach the test methods.

Table 6. Subject Systems

PID Project LOC #Tests #Methods #Mutants

#Total #Selected #Total #Killed

1 Bukkit-1.7.9-R0.2 32373 432 7325 2385 7325 947
2 commons-lang-LANG 3 7 77224 4068 13052 2740 13052 11284
3 commons-math-MATH 3 6 1 208959 6523 48524 6663 48524 38016
4 java-apns-apns-0.2.3 3418 91 429 150 429 247
5 jfreechart-1.5.0 134117 2175 34488 7133 34488 11527
6 pysonar2-2.1 10926 269 3070 719 3074 836

Overall 467017 13558 106888 19790 106892 62857

4.2 Tool implementation
To evaluate the mutant observability metrics that we have proposed, we implement a prototype tool
(coined MUTATION OBSERVER) to capture all the necessary information from both the program under
test and the mutation testing process. This tool is openly available on GitHub [36].

Our tool extracts information from three parts of the system under test (in Java): source code, bytecode,
and tests. Firstly, Antlr [37] parses the source code to obtain the basic code features, e.g., is public,
is static and (cond). Secondly, we adopt Apache Commons BCEL [38] to parse the bytecode. Then,
java-callgraph [39] generates the pairs of method calls between the source code and tests, which we
later use to calculate direct test no. and other test call related metrics. The last part is related to the
mutation testing process, for which we adopt PiTest [3] to obtain the killable mutant results. An overview

7/26

(a) Distribution of mutation score per method

(b) Distribution of total mutant no. per method

of the architecture of MUTATION OBSERVER can be seen in Figure 2.
The mutation operators we adopt are the default mutation operators provided by PitTest [40]:

Conditionals Boundary Mutator, Increments Mutator, Invert Negatives Mutator, Math Mutator,
Negate Conditionals Mutator, Return Values Mutator and Void Method Calls Mutator.

4.3 Design of Experiment
To answer RQ1 and RQ2, we first adopt Spearman’s rank-order correlation to statistically measure the
correlation between each metric (both existing code metrics and mutant observability metrics) and the
mutation score of the corresponding methods or classes. Spearman’s correlation test checks whether there

8/26

tests

Apache
Commons
BCEL

input outputMutation Observer

source
code

bytecode

mutant
killable
results

mutant
observability

smells
java­callgraph test

directness

code
features

Figure 2. Overview of MUTATION OBSERVER architecture

exists a monotonic relationship (linear or not) between two data samples. It is a non-parametric test and,
therefore, it does not make any assumption about the distribution of the data being tested. The resulting
coefficient ρ takes values in the interval [−1;+1]; the higher the correlation in either direction (positive
or negative), the stronger the monotonic relationship between the two data samples under analysis. The
strength of the correlation can be established by classifying the into “negligible” (|ρ| < 0.1), “small”
(0.1≤ |ρ|< 0.3), “medium” (0.3≤ |ρ|< 0.5), and “large” (|ρ| ≥ 0.5) [41]. Positive ρ values indicate
that one distribution increases when the other increases as well; negative ρ values indicate that one
distribution decreases when the other increases.

The mutation score is calculated by Equation 1 (method-level).

mutation score (A) =
killed mutants in method A
total mutants in method A

1 (1)

To calculate Spearman’s rank-order correlation coefficient between each metric and mutation score,
we adopt Matlab to conduct the statistical analysis (corr function with the option of “Spearman” in
Matlab’s default package).

Moreover, except for the pair-wise correlations between each metric and mutation score, we are also
interested in how those metrics interact with each other. To do so, we first turn the correlation problem
into a binary classification problem. We use 0.5 as the cutoff between HIGH and LOW mutation core. We
consider all the metrics to predicat whether the method belongs to classes with HIGH or LOW mutation score.
For prediction, we adopt Random Forest [42] as the classification algorithm, where we use WEKA [43] to
build the prediction model. Random Forest is an ensemble method based on a collection of decision tree
classifiers , where the individual decision trees are generated using a random selection of attributes at
each node to determine the split [44]. Thus, random forest is more accurate than one decision tree, and
overfitting is not a problem [44]. In terms of feature importance, we apply scikit-learn [45] to conduct
the analysis.

To answer RQ3, we first compare the results of Spearman’s Rank-Order Correlation analysis between
existing code metrics and mutant observability metrics in terms of rho and p-value. Then, we compare
the results of the prediction models generated by the Random Forests learning method. More specifically,
for each project, we compare three types of classification models: (1) a model based on merely existing
code metrics, (2) a model based on merely mutant observability metrics, and (3) a model based on the
combination of existing and our observability metrics (overlapping metrics, e.g., method length to NLOC,

9/26

are only considered once). To examine the effectiveness of random forests in our dataset, we also consider
ZeroR, which classifies all the instances to the majority and ignores all predictors, as the baseline. It might
be that our data is not balanced, as in that one project has over 90% methods with a HIGH mutation score.
This could entail that the classification model achieving 90% accuracy is not necessarily an effective
model. In this situation, ZeroR could also achieve over 90% accuracy in that scenario. Our random forests
model must thus perform better than ZeroR; otherwise, the random forests model is not suitable for our
dataset.

In total, we consider four classification models: 1) ZeroR, 2) random forests model based on existing
metrics, 3) random forests model based on mutant observability metrics, and 4) random forests model
based on the combination of existing metrics and mutant observability metrics.

To answer RQ4, we first need to establish the anti-patterns (or smells) based on these metrics. An
example of an anti-pattern rule generated from the metrics is: method length > 20 and test distance
> 2. In this case, it is highly likely that the method has low mutation score. To obtain the anti-pattern rules,
we adopt J48 to build a decision tree [46, 43]. We consider J48 because of its advantage in interpretation
over random forests. After building the decision tree, we rank all leaf (or paths) according to instances
falling into each leaf and accuracy. We select the leaves with the highest instances and accuracy ≥ 0.8 for
further manual analysis, to understand to what extent refactoring of the anti-patterns can help in improving
the mutation score.

4.4 Evaluation Metrics
For RQ1, RQ2, and RQ3, to ease the comparisons of the four classification models, we consider four
metrics which have been widely used in classification problems: precision, recall, AUC, and the mean
absolute error. To that end, we first introduce four key notations: TP, FP, FN, and TN, which denotes true
positive, false positive, false negative, and true negative, respectively.

Precision The fraction of true positive instances in the instances that are predicted to be positive:
TP/(TP+FP). The higher the precision is, the fewer false positive errors there are.

Recall The fraction of true positive instances in the instances that are actual positives: TP/(TP+FN).
The higher the recall, the fewer false negative errors there are.

AUC The area under ROC curve, which measures the overall discrimination ability of a classifier. An
area of 1 represents a perfect test; an area of 0.5 represents a worthless test.

Mean absolute error The mean of overall differences between the predicted values and actual values.

5 RQ1 - RQ3 TESTABILITY VERSUS OBSERVABILITY VERSUS COMBINA-
TION

We opt to discuss the three research questions, RQ1, RQ2 and RQ3, together, because it gives us the
opportunity to compare testability, observability and their combination in detail.

5.1 Spearman’s rank order correlation
5.1.1 Testability
Findings Table 7 presents the overall results of Spearman’s rank-order correlation analysis for existing
code metrics. The columns of “rho” represent the pairwise correlation coefficient between each code
metrics and the mutation score. The p-values columns denote the strength of evidence for testing the
hypothesis of no correlation against the alternative hypothesis of a non-zero correlation using Spearman’s
rank-order. Here we used 0.05 as the cut-off for significance. From Table 7 , we can see that except for NOS,
NLOC, MOD, EXCR, INST(class), NSUB(class), COH(class) and S-R(class) (which, for convenience,
we highlighted by underlining the value), the correlation results for the metrics are all statistically
significant.

The pair-wise correlation between each source code metric and the mutation score is not strong.
We speculate the reason behind the weak correlations to be collinearity of these code metrics. More
specifically, Spearman’s rank-order correlation analysis only evaluates the correlation between individual
code metric and mutation score. Some code metrics could interact with each other. E.g., a long method is
not necessary to have low mutation score. If there are more than four loops in a long method, then the
method is very likely to have low mutation score.

10/26

Table 7. Spearman Results of Existing Code Metrics for Testability

metric rho p-value metric rho p-value metric rho p-value

COMP 0.0398 2.16E-08 NOC 0.1908 1.254E-161 R-R(class) -0.2524 3.721E-285
NOCL 0.1047 2.32E-49 NOA 0.0423 2.723E-09 NSUB(class) -0.0048 0.5009
NOS -0.0139 0.05024 CAST -0.0162 0.02302 NSUP(class) -0.2634 0
HLTH 0.0518 2.927E-13 HDIF 0.1334 2.691E-79 NCO(class) -0.0751 3.602E-26
HVOC 0.0485 8.831E-12 NEXP 0.0288 5.135E-05 FOUT(class) -0.1073 9.482E-52
HEFF 0.0856 1.595E-33 NOMT(class) 0.0981 1.564E-43 DIT(class) -0.2634 0
HBUG 0.0518 3.163E-13 LCOM(class) 0.0564 2.125E-15 CCOM(class) 0.1695 1.589E-127
CREF 0.0193 0.00653 AVCC(class) 0.0405 1.206E-08 COH(class) 0.0001 0.9852
XMET 0.0465 5.743E-11 NOS(class) 0.0793 5.416E-29 S-R(class) 0.0016 0.8184
LMET -0.0221 0.00191 HBUG(class) 0.0824 3.826E-31 MINC(class) -0.0255 0.0003272
NLOC -0.0004 0.95 HEFF(class) 0.0982 1.213E-43 EXT(class) -0.0636 3.314E-19
VDEC 0.0281 7.702E-05 UWCS(class) 0.0929 3.708E-39 INTR(class) -0.0571 9.413E-16
TDN 0.0408 9.634E-09 INST(class) 0.0045 0.5238 MPC(class) -0.0636 3.314E-19
NAND 0.0357 5.191E-07 PACK(class) -0.1029 9.956E-48 HVOL(class) 0.0823 4.344E-31
LOOP 0.0685 5.116E-22 RFC(class) 0.095 6.38E-41 HIER(class) -0.212 6.066E-200
MOD 0.0103 0.1482 CBO(class) -0.0157 0.0274 HLTH(class) 0.0911 9.53E-38
NOPR 0.067 3.801E-21 MI(class) 0.0482 1.144E-11 SIX(class) -0.197 2.388E-172
EXCT 0.1125 9.723E-57 CCML(class) 0.1559 6.998E-108 TCC(class) 0.0897 1.203E-36
MDN 0.053 8.3E-14 NLOC(class) 0.0756 1.692E-26 NQU(class) 0.1489 1.568E-98
EXCR -0.0067 0.3473 RVF(class) -0.033 3.498E-06 F-IN(class) 0.0875 6.031E-35
HVOL 0.0512 5.719E-13 LCOM2(class) -0.0486 7.691E-12 MOD(class) 0.0516 3.738E-13
VREF 0.0446 3.42E-10 MAXCC(class) -0.0178 0.01245 LMC(class) 0.1034 3.68E-48

Table 8. Spearman results of mutant observability metrics

metric rho pvlaue metric rho pvlaue

is public -0.0639 2.35E-19 (cond(cond)) -0.0415 5.4E-09
is static 0.1137 6.29E-58 (cond(loop)) 0.0073 0.302
is void -0.1427 1.42E-90 (loop) 0.0685 5.12E-22
is nested 0.0466 5.38E-11 (loop(cond)) 0.0216 0.00242
method length -0.0004 0.95 (loop(loop)) 0.0428 1.65E-09
nested depth 0.053 8.3E-14 non void percent 0.2424 1.24E-262
direct test no 0.4177 0 getter percent -0.153 6.23E-104
test distance -0.4921 0 assertion-McCabe 0.3956 0
assertion no 0.3858 0 assertion-density 0.4096 0
(cond) 0.023 0.00124

From Table 7, we can see that the highest rho is -0.2634 for both NSUP(class) standing for Number
of Superclasses, and DIT(class), or Depth of Inheritance Tree. Followed by R-R(class), for Reuse
Ratio, and HIER(class), for Hierarchy method calls. At first glance, the top 4 metrics are all class-level
metrics. However, we cannot infer that class-level metrics are more impactful on the mutation score
than method-level ones. In particular, it can be related to the fact that we have considered more class-
level metrics than method-level ones in the experiment. It would be an interesting direction for further
researchers to investigate.

Besides, we expected that the metrics related to McCabe’s Cyclomatic Complexity, i.e. COMP, TCC,
AVCC and MAXCC, would show stronger correlation to the mutation score, as McCabe’s Cyclomatic
Complexity has been widely considered a powerful measure to quantify the complexity of a software
program and it is used to provide a lower bound to the number of tests that should be written [47, 48, 49]).
Based on our results without further investigation, we could only speculate that McCabe’s Cyclomatic
Complexity might not directly influence the mutation score. This could be another interesting angle to
explore in future work.

Summary We found that the relation between the 64 existing source code quality metrics and the
mutation score to be not so strong (<0.27).

5.1.2 Observability
Findings Table 8 shows the overall results of Spearman’s rank-order correlation analysis for mutant
observability metrics. From Table 8, we can see that except for method length and (cond(loop)),
whose p-value is greater than 0.05, the results of the other observability metrics are statistically significant.
The overall correlation between mutant observability metrics and mutation score are still not strong
(<0.5), but significantly better than existing code metrics (<0.27). The top 5 are test distance,
direct test no., assertion-density, assertion-McCabe and assertion no. The metrics related to

11/26

Table 9. Random Forest Results of mutant observability metrics vs. Existing Metrics

pid ZeroR existing mutant observability combined

prec. recall AUC err. prec. recall AUC err. prec. recall AUC err. prec. recall AUC err.

1 0.856 0.856 0.497 0.2465 0.927 0.93 0.961 0.1014 0.940 0.942 0.960 0.0786 0.946 0.948 0.976 0.0741
2 0.913 0.913 0.498 0.1595 0.947 0.951 0.932 0.0775 0.960 0.962 0.946 0.063 0.957 0.959 0.951 0.067
3 0.815 0.815 0.499 0.3015 0.848 0.861 0.836 0.2039 0.866 0.864 0.871 0.1727 0.887 0.893 0.909 0.167
4 0.507 0.507 0.468 0.5001 0.667 0.667 0.733 0.3831 0.861 0.860 0.909 0.2044 0.827 0.827 0.887 0.2626
5 0.62 0.62 0.5 0.4712 0.842 0.843 0.908 0.2347 0.868 0.869 0.931 0.1801 0.901 0.901 0.955 0.168
6 0.726 0.726 0.493 0.3982 0.73 0.743 0.804 0.2948 0.708 0.716 0.779 0.2976 0.742 0.755 0.802 0.2946

all 0.569 0.569 0.5 0.4905 0.862 0.862 0.928 0.2133 0.864 0.864 0.937 0.1846 0.905 0.905 0.963 0.1625
dir. 0.853 0.853 0.499 0.2513 0.945 0.946 0.949 0.0915 0.941 0.943 0.955 0.0933 0.950 0.951 0.962 0.0886
non. 0.593 0.593 0.5 0.4829 0.853 0.853 0.923 0.2329 0.813 0.814 0.893 0.2371 0.878 0.879 0.941 0.2075

Table 10. Feature Importances of Classification Model (1)

1 2 3 4 5

metric imp. metric imp. metric imp. metric imp. metric imp.

test distance 0.35 test distance 0.15 test distance 0.13 test distance 0.48 test distance 0.23
NLOC(class) 0.15 HIER(class) 0.12 NOCL 0.05 method length 0.03 is void 0.1
NOCL 0.03 CCML(class) 0.05 HDIF 0.03 COMP 0.03 EXCT 0.04
CREF 0.03 NLOC(class) 0.05 MI(class) 0.03 NOCL 0.03 NOCL 0.03
MINC(class) 0.03 NOCL 0.04 is static 0.02 CAST 0.03 NOS 0.03
non void percent 0.02 MI(class) 0.04 non void percent 0.02 HDIF 0.03 S-R(class) 0.03
HDIF 0.02 assertion-density 0.03 HVOC 0.02 (cond) 0.02 is public 0.02
NOS(class) 0.02 CREF 0.03 HEFF 0.02 VREF 0.02 nested depth 0.02
PACK(class) 0.02 HDIF 0.03 CREF 0.02 is void 0.01 direct test no 0.02
TCC(class) 0.02 PACK(class) 0.03 VREF 0.02 direct test no 0.01 assertion no 0.02
LMC(class) 0.02 method length 0.02 NEXP 0.02 assertion no 0.01 CREF 0.02
HLTH 0.01 HVOC 0.02 HEFF(class) 0.02 non void percent 0.01 HDIF 0.02
HVOC 0.01 HEFF 0.02 PACK(class) 0.02 assertion-density 0.01 PACK(class) 0.02
HEFF 0.01 LMET 0.02 CBO(class) 0.02 HLTH 0.01 F-IN(class) 0.02
XMET 0.01 NOA 0.02 CCML(class) 0.02 HVOC 0.01 method length 0.01

test directness, i.e., test distance (-0.4923) and direct test no (0.4177) are ranked first in terms of
rho among all metrics that we consider (including existing code metrics in Section 2.2). This observation
corresponds to our findings in Section 3 and our expectations that the methods with no direct test are more
difficult for mutation testing. In terms of rho values, the assertion related metrics are ranked after test
directness related metrics, which supports our conjectures in Section 3 that the quality of assertions can
influence the outcome of mutation testing.

Summary The correlations between mutant observability metrics and mutation score are not very strong
(<0.5), however, significantly better than the correlations for existing code metrics. Test directness
(test distance and direct test no.) takes the first place of NSUP(class) in rho among all metrics
(including existing ones in Section 2.2), followed by assertion-based metrics (assertion-density,
assertion-McCabe and assertion no).

5.2 Random forests
Classification effectiveness As discussed in Section 4.3, we compare the four models in terms of both
our mutant observability metrics and the existing metrics, i.e.,

1. ZeroR: model using ZeroR approach

2. existing: random forests model based on existing code metrics

3. mutant observability: random forests model based on mutant observability metrics

4. combined: random forests model based on the combination of existing metrics and mutant observ-
ability metrics.

The comparison of the four models are shown in Table 9. To make clear which model performs better
than the others, we highlighted the values of the model achieving the best performance among the four in
bold, that of second best in underline. For precision, recall and AUC, the model with best performance

12/26

Table 11. Feature Importances of Classification Model (2)

6 all dir. non-dir.

metric imp. metric imp. metric imp. metric imp.

CBO(class) 0.09 test distance 0.29 is void 0.22 test distance 0.16
HDIF 0.07 PACK(class) 0.06 PACK(class) 0.13 NOCL 0.09
NQU(class) 0.06 NOCL 0.05 HDIF 0.05 non void percent 0.04
test distance 0.04 is void 0.03 NOS 0.04 EXCT 0.04
non void percent 0.03 EXCT 0.03 assertion-density 0.03 HDIF 0.03
HVOC 0.03 non void percent 0.02 NEXP 0.03 PACK(class) 0.03
HEFF 0.03 CREF 0.02 direct test no 0.02 MI(class) 0.03
CREF 0.03 HDIF 0.02 assertion no 0.02 CREF 0.02
XMET 0.03 MI(class) 0.02 assertion-McCabe 0.02 CBO(class) 0.02
NAND 0.03 is public 0.01 NOCL 0.02 MINC(class) 0.02
VREF 0.03 is nested 0.01 CREF 0.02 HIER(class) 0.02
NOA 0.03 method length 0.01 NOA 0.02 F-IN(class) 0.02
NEXP 0.03 nested depth 0.01 MINC(class) 0.02 MOD(class) 0.02
method length 0.02 assertion no 0.01 method length 0.01 is public 0.01
NOCL 0.02 getter percent 0.01 nested depth 0.01 is static 0.01

is the one with the highest value, while for the mean absolute error, the best scoring model exhibits the
lowest value.

From Table 9, we can see that the random forest models are better than the baseline ZeroR which
only relies on the majority. This is the prerequisite for further comparison. Combined achieves the best
performance (in 5 out of 6 projects) compared to the existing code metrics and mutant observability
metrics in terms of AUC; this observation is as expected since combined considered both the existing and
our metrics during training, which provides the classification model with more information. The only
exception is java-apns-apns-0.2.3. We conjecture that the number of instances (selected methods) in
this project might be too small (only 150) to develop a sound prediction model. In second place comes
the model based on mutant observability metrics, edging out the model based on existing metrics.

For the overall dataset (the 7th row marked with “all” in Table 9), combined takes the first place in
all evaluation metrics. In second place come the mutant observability, slightly better than existing.
Another angle which is interesting to further investigate is the test directness. If we only consider the
methods that are directly tested (the second to last row in Table 9), combined again comes in first, followed
by the existing code metrics model. The same observation holds for the methods that are not directly
tested (the last row in Table 9). It is easy to understand that when the dataset only considers methods that
are directly tested (or not), the test directness features in our model become irrelevant. However, we can
see that the difference between existing metrics and ours are quite tiny (<3.4%).

Feature importances analysis Tables 10 and 11 show the top 15 features per project (and overall)
in descending order. We can see that for five out of the the six projects (including the overall dataset),
test distance ranks first. This again supports our previous findings that test directness plays a significant
role in mutation testing. The remaining features in the top 14 vary per projects; this is not surprising,
as the task and context of these projects are varying greatly. For example, Apache Commons Lang
(Column “2” in Table 10) is a utility library that provides a host of helper methods for the java.lang API.
Therefore, most methods in Apache Commons Lang are public and static; thus is public and is static
are not among the top 15 features for Apache Commons Lang. A totally different context is provided
by the JFreeChart project (Column “5” in Table 10). JFreeChart is a Java chart library, whose class
encapsulation and inheritance hierarchy are well-designed, so is public appears among the top 15
features.

Zooming in on the overall dataset (Column “all” in Table 11), there are eight metrics from our
proposed mutant observability metrics among the top 15 features. The importance of test distance is
much higher than the other features (¿4.83X). In second place comes PACK(class), or the number of
packages imported. This observation is easy to understand since PACK(class) denotes the complexity
of dependency, and dependency could influence the difficulty of testing, especially when making use
of mocking objects. Thereby, dependency affects the mutation score. Clearly, more investigations are
required to draw further conclusions. The third place in the feature importance analysis is taken by NOCL,
which stands for the Number of Comments. This observation is quite interesting since NOCL is related to
how hard it is to understand the code (code readability). This implies that code readability could have an
impact on mutation testing. It is certainly an invitation for future work to explore the relationship between

13/26

Table 12. Selected feature by PCA

is public (cond) assertion-density XMET
is static (cond(cond)) COMP LMET
is void (cond(loop)) NOCL NLOC
is nested (loop) NOS VDEC
method length (loop(cond)) HLTH TDN
nested depth (loop(loop)) HVOC NAND
direct test no non-void percent HEFF LOOP
test distance getter percent HBUG MOD
assertion no assertion-McCabe CREF NOPR

code readability and mutation testing.
As for the methods with direct tests (Column “dir.” in Table 11), is void takes the first position,

which indicates that it is more difficult to achieve a high mutation score for void methods. Considering
the methods without direct tests (Column “non-dir.” in Table 11), test distance again ranks first.

Another interesting observation stems from the comparison of the performance of assertion related
metrics in the feature importance analysis and the Spearman rank order correlation results (in Section 5.1).
For Spearman’s rank order correlation, we can see that assertion related metrics are the second significant
category right after test directness (in Table 8 in Section 5.1). While in the feature importance analysis,
assertion related metrics mostly rank after the top 5 (shown in Table 10 and Table 11) We speculate
that the major reason is because test directness and assertion related metrics are almost collinear in the
prediction model. For the six subjects, there are no tests without assertions. If the method has a direct test,
then the corresponding assertion no. is always greater than 1. Therefore, the ranks of assertion related
metrics are not as high as we had initially expected in the feature importance analysis.

Summary Overall, the random forests model based on the combination of existing code metrics and
mutant observability metrics performs best, followed by that on mutant observability metrics. The analysis
of feature importances shows that test directness ranks highest, remarkably higher than the other metrics.

6 RQ4 CODE REFACTORING
It is our goal to investigate whether we can refactor away the observability issue that we expect to hinder
tests from killing mutants and thus to affect the mutation score. In an in-depth case study, we manually
analyse 16 code fragments to better understand the interaction between observability, the metrics that we
have been investigating, and the possibilities for refactoring.

Our analysis starts from the combined model, which as Table 9 shows, takes the leading position
among the models. We then apply Principal Component Analysis (PCA) [50] to perform feature selection,
which, as Table 12 shows, leaves us with 36 features (or metrics). Then, as discussed in Section 4, we
build a decision tree based on those 36 metrics using J48 (shown in Figure 3), and select the top 6 leaves
(also called end nodes) in the decision tree for further manual analysis as potential refactoring guidelines.

Here, we take a partial decision tree to demonstrate how we generate rules (shown in Figure 4).
In Figure 4, we can see that there are three attributes (marked as ellipse) and four end nodes (marked
as rectangle) in the decision tree. Since we would like the investigate how code refactoring improves
mutation score (RQ4), we only consider the end nodes labeled with “LOW” denoting mutation score<0.5.
By combining the conditions along the paths of the decision tree, we obtain the two rules for “LOW” end
nodes (as shown in the first column of the table in Figure 4). For every end node, there are two values
attached to the class: the first is the number of instances that correctly fall into the node, the other is
the instances that incorrectly fall into the node. The accuracy in the table is computed by the number of
correct instances divided by that of total instances. As mentioned earlier, we select the top 6 end nodes
from the decision tree, where the end nodes are ranked by the number of correct instances under the
condition accuracy≥0.8.

In our actual case study, we manually analyse 16 cases in total. Due to space limitations, we only
highlight six cases in this paper (all details are available on GitHub [36]). We will discuss our findings in
code refactoring case by case.

6.1 Case 1: org.jfree.chart.plot.MeterPlot::drawValueLabel
This case (shown in Listing 4) is under anti-pattern Rule 1: test distance > 5 && (loop(loop))
≤ 0 && is nested = 0 && is public = 0 && XMET > 4 && (loop) ≤ 0 && NOCL ≤ 9 &&

14/26

Figure 3. Overview of J48 decision tree
15/26

HBUG

non-void_percent

HIGH (67/21)

HIGH (25/10) LOW (27/6)

getter_percent

LOW (41/9)

<= 0.04 > 0.04

<= 0.61 > 0.61

<= 0.07 > 0.07

...

Rule Correct
instance

Incorrect
instance Accuracy

HBUG > 0.04 41 9 0.82

HBUG <=0.04
&& non-void_percent > 0.61
&& getter_percent > 0.07

27 6 0.818

Figure 4. Demo of rule generation

Table 13. Summary of mutants from Listing 4 (Case 1)

ID Line No. Mutator Results

1 1146 removed call to java/awt/Graphics2D::setFont SURVIVED
2 1147 removed call to java/awt/Graphics2D::setPaint SURVIVED
3 1149 negated conditional SURVIVED
4 1151 negated conditional SURVIVED
5 1157 Replaced float addition with subtraction SURVIVED

Table 14. Summary of mutants from Listing 8 (Case 2)

ID Line No. Mutator Results

1 165 mutated return of Object value for org/jfree/chart/util/PaintAlpha::darker to (if (x
!= null) null else throw new RuntimeException)

NO COVERAGE

2 166 Replaced double multiplication with division NO COVERAGE
3 167 Replaced double multiplication with division NO COVERAGE
4 168 Replaced double multiplication with division NO COVERAGE

non-void percent ≤ 0.42. In total, there are 5 mutants generated from this method (shown in Table 13).
All 5 mutants survive the test suite.

Code refactoring We start with test distance > 5 which means there is no direct test for this method.
Accordingly, we add one direct test (shown in Listing 5).

However, Mutant 4 and 5 cannot be killed by adding the above direct test. Upon inspection, we found
that Mutant 4 and 5 cannot be killed because the DrawValueLabel(...) method is void. In particular,
this means that the changes in state caused by the TextUtils.drawAlignedString() method (line 1158)
cannot be assessed. This is indicated by non-void percent ≤ 0.42 in Rule 1. We then refactor the
method to have it return Rectangle2D (shown in Listing 6). Also, we improve the direct test for this
method in Listing 5 by adding a new test method (shown in Listing 7) in order to avoid the assertion
roulette test smell [51, 52]. By refactoring the method to non-void and adding a direct test, all previously
surviving mutants are now successfully killed.

6.2 Case 2: org.jfree.chart.axis.SymbolAxis::drawGridBands
This case (shown in Listing 8) is under Rule 2: test distance > 5 && (loop(loop)) ≤ 0 &&
is nested = 0 && is public = 0 && XMET > 4 && (loop) ≤ 0 && NOCL > 9. In total, 4 mutants
are generated from this method (see Table 14). None of the mutants are killed.

16/26

1139/**
1140* Draws the value label just below the center of the dial.
1141*
1142* @param g2 the graphics device.
1143* @param area the plot area.
1144*/
1145protected void drawValueLabel(Graphics2D g2, Rectangle2D area) {
1146g2.setFont(this.valueFont);
1147g2.setPaint(this.valuePaint);
1148String valueStr = "No value";
1149if (this.dataset != null) {
1150Number n = this.dataset.getValue ();
1151if (n != null) {
1152valueStr = this.tickLabelFormat.format(n.doubleValue ()) + " "
1153+ this.units;
1154}
1155}
1156float x = (float) area.getCenterX ();
1157float y = (float) area.getCenterY () + DEFAULT_CIRCLE_SIZE;
1158TextUtils.drawAlignedString(valueStr , g2, x, y,TextAnchor.TOP_CENTER);
1159}

Listing 4. org.jfree.chart.plot.MeterPlot::drawValueLabel (Case 1)

1@Test
2public void testDrawValueLabel (){
3MeterPlot p1 = new MeterPlot(new DefaultValueDataset (1.23));
4BufferedImage image = new BufferedImage (3, 4, BufferedImage.TYPE_INT_ARGB);
5Graphics2D g2 = image.createGraphics ();
6Rectangle2D area = new Rectangle(0, 0, 1, 1);
7p1.drawValueLabel(g2,area);
8assertTrue(g2.getFont () == p1.getValueFont ());
9assertTrue(g2.getPaint () == p1.getValuePaint ());
10}

Listing 5. Direct test for Listing 4 (Case 1)

Code refactoring It is clear that this method is private, thus it is impossible to directly call this method
from outside the class. We first refactor this method from private to public. This is revealed by
is public = 0 in Rule 2.

Then, guided by test distance > 5 from Rule 2, we add a direct test for this method to kill all
mutants (see Listing 10).

6.3 Case 3: org.apache.commons.lang3.builder.IDKey::hashCode
This case (shown in Listing 11) is under Rule 3: test distance > 5 && (loop(loop)) ≤ 0 &&
is nested = 0 && is public = 1 && NOCL ≤ 4 && NOCL > 0 && is static = 0 && getter percent
≤ 0.01 && HBUG ≤ 0.02 && method length > 3. Only one mutant is generated for this method: a
mutant that replaces the return value with (x == 0 ? 1 : 0). This mutant survives.

Code refactoring Starting with test distance > 5, we add a direct test for this method (shown in
Listing 12), which works perfectly to kill the mutant.

6.4 Case 4: org.jfree.chart.renderer.category.AbstractCategoryItemRenderer::drawOutline
This case (shown in Listing 13) is under Rule 4: test distance > 5 && (loop(loop)) ≤ 0
&& is nested = 0 && is public = 1 && NOCL > 4 && (cond) ≤ 0 && is static =
0 && LMET ≤ 1 && NOCL > 8 && NOPR > 5 && is void = 1. Also in this case, only
1 mutant is generated for this method. The particular change applied is the removal of the call to
org.jfreechart.plot.CategoryPlot::drawOutline. The mutant is not killed by the original test
suite.

17/26

1145protected Rectangle2D drawValueLabel(Graphics2D g2, Rectangle2D area) {

1146g2.setFont(this.valueFont);
1147g2.setPaint(this.valuePaint);
1148String valueStr = "No value";
1149if (this.dataset != null) {
1150Number n = this.dataset.getValue ();
1151if (n != null) {
1152valueStr = this.tickLabelFormat.format(n.doubleValue ()) + " "
1153+ this.units;
1154}
1155}
1156float x = (float) area.getCenterX ();
1157float y = (float) area.getCenterY () + DEFAULT_CIRCLE_SIZE;

1158return TextUtils.drawAlignedString(valueStr, g2, x, y,TextAnchor.TOP CENTER);

1159}

Listing 6. Refactoring of Listing 4 (Case 1)

1@Test

2public void testDrawValueLabelArea() {

3MeterPlot p1 = new MeterPlot(new DefaultValueDataset (1.23));
4BufferedImage image = new BufferedImage (3, 4, BufferedImage.TYPE_INT_ARGB);
5Graphics2D g2 = image.createGraphics ();
6Rectangle2D area = new Rectangle(0, 0, 1, 1);

7Rectangle2D drawArea = p1.drawValueLabel(g2,area);

8assertEquals(0.5,drawArea.getCenterX(),0.01);

9assertEquals(18.8671875,drawArea.getCenterY(),0.01);

10assertEquals(15.0,drawArea.getHeight(),0.01);

11assertEquals(64.0,drawArea.getWidth(),0.01);

12}

Listing 7. Improved direct test for Listing 4 (Case 1)

Code refactoring Based on test distance > 5, we add one direct test (as shown in Listing 14) for
this method to kill the surviving mutant.

6.5 Case 5: org.jfree.chart.renderer.category.AbstractCategoryItemRenderer::drawOutline
This case (shown in Listing 15) is under Rule 5: test distance ≤ 5 && is void = 1 && nested depth
≤ 0 && NOS ≤ 2 && assertion-density ≤ 0.14 && MOD > 1. In this case a single (surviving)
mutant is generated that removes the call to org.apache.commons/lang3.builder.ToStringStyle::
setUseShortClassName.

Code refactoring We can see that Rule 5 is different from the previous rule in that test distance is
less than 5, while in Rule 4 test distance > 5. A more in-depth analysis reveals that the method in
Listing 15 is already directly invoked by the original test suite. The surviving mutant is due to the fact
that there are no assertions that examine the changes after the setUseShortClassName method call. This
situation is reflected by assertion-density ≤ 0.14 in Rule 5. Therefore, we add assertions to assess
the changes (seen in Listing 16), which leads to the mutant being killed.

6.6 Case 6: org.apache.commons.math3.exception.TooManyEvaluationsException::<init>
This case (shown in Listing 17) is under Rule 6: test distance ≤ 5 && is void = 1 &&
nested depth ≤ 0 && NOS > 2 && assertion-density ≤ 0.22 && CREF > 1 && XMET
> 0 && VDEC ≤ 0 && NOCL ≤ 12. A single mutant is generated: a removal of the call to
org.apache.commons.math3.exception.util.ExceptionContext::addMessage. This mutant is sur-
viving the test suite.

Code refactoring We found that the mutant in Line 37 cannot be killed because the function addMessage
changes the field List<Localizable> msgPatterns. This field is private in the class ExceptionContext

18/26

154/**
155* Similar to {@link Color#darker ()}.
156* <p>
157* The essential difference is that this method
158* maintains the alpha -channel unchanged

159*
160* @param paint a {@code Color}
161*
162* @return a darker version of the {@code Color}
163*/
164private static Color darker(Color paint) {
165return new Color(
166(int)(paint.getRed () * FACTOR),
167(int)(paint.getGreen () * FACTOR),
168(int)(paint.getBlue () * FACTOR), paint.getAlpha ());
169}

Listing 8. org.jfree.chart.axis.SymbolAxis::drawGridBands (Case 2)

164public static Color darker(Color paint) {

165return new Color(
166(int)(paint.getRed () * FACTOR),
167(int)(paint.getGreen () * FACTOR),
168(int)(paint.getBlue () * FACTOR), paint.getAlpha ());
169}

Listing 9. Refactoring of Listing 8 (Case 2)

and there is no other way to access it. As such, our first step is to add a getter for msgPatterns (shown in
Listing 18). In Rule 6, we can see that is void = 1 is the underlying cause since void methods could be
difficult to test if no getters for private fields exist.

To kill the surviving mutant, we add one extra assertion (in a new test method) to examine the changes
in msgPatterns (in Listing 19). This action is also partly evidenced by assertion-density ≤ 0.22 in
Rule 6. As assertion-density denotes the ratio between the total number of assertions in direct tests and
the lines of code in direct tests, low assertion-density is a sign of insufficient assertions in the direct tests
to detect the mutant.

6.7 RQ4 Summary
Based on all 16 cases that we analysed (available in our GitHub repository [36]), we found that our mutant
observability metrics can lead to actionable refactorings that enable to kill mutants that were previously
not being killed. Ultimately, this leads to an improvement of the mutation score:

• most cases can be easily fixed by adding direct tests if test distance>5.

• most cases can be easily fixed by adding assertions if test distance≤5.

• private methods must be refactored to protected/public for testing (indicated by is public=0).

1@Test
2public void testDarker (){
3Color paint = new Color (10 ,20 ,30);
4Color darker = PaintAlpha.darker(paint);
5assertEquals (7,darker.getRed ());
6assertEquals (14, darker.getGreen ());
7assertEquals (21, darker.getBlue ());
8}

Listing 10. Direct test for Listing 8 (Case 2)

19/26

46/**
47* returns hash code - i.e. the system identity hashcode.
48* @return the hashcode
49*/
50@Override
51public int hashCode () {
52return id;
53}

Listing 11. org.apache.commons.lang3.builder.IDKey::hashCode (Case 3)

1@Test
2public void testHashCode (){
3IDKey idKey = new IDKey(new Integer (123));
4assertEquals (989794870 , idKey.hashCode ());
5}

Listing 12. Direct test for Listing 11 (Case 3)

• three void methods had to be refactored to be non-void (indicated by is void = 1 and non-void percent
≤ 0.42).

• one void method needed an additional getter because a private field was changed (indicated by
is void = 1).

7 THREATS TO VALIDITY
External validity Our results are based on mutants generated by the operators implemented in PiTest.
While PiTest is a frequently used mutation testing tool, our results might be different when using other
mutation tools [53]. With regard to the subject systems selection, we chose six open-source projects from
GitHub; the selected projects differ in size, number of test cases and application domain. Nevertheless,
we do acknowledge that a broad replication of our study would mitigate any generalizability concerns
even further.

Internal validity The main threat to internal validity for our study is the implementation of the MUTA-
TION OBSERVER tool for the experiment. To reduce internal threats to a large extent, we relied on existing
tools that have been widely used, e.g., WEKA, MATLAB and PiTest. Moreover, we carefully reviewed and
tested all code for our study to eliminate potential faults in our implementation. Another threat to internal
validity is the disregard of equivalent mutants in our experiment. However, this threat is unavoidable and
shared by other studies on mutation testing that attempt to detect equivalent mutants or not. Moreover, we
consider equivalent mutants as potential weakness in the software (reported by Coles [54, slide 44-52]),

808/**
809* Draws an outline for the data area. The default implementation just
810* gets the plot to draw the outline , but some renderers will override this
811* behaviour.
812*
813* @param g2 the graphics device.
814* @param plot the plot.
815* @param dataArea the data area.
816*/
817@Override
818public void drawOutline(Graphics2D g2, CategoryPlot plot ,
819Rectangle2D dataArea) {
820plot.drawOutline(g2, dataArea);
821}

Listing 13.
org.jfree.chart.renderer.category.AbstractCategoryItemRenderer::drawOutline (Case 4)

20/26

1@Test
2public void testDrawOutline (){
3AbstractCategoryItemRenderer r = new LineAndShapeRenderer ();
4BufferedImage image = new BufferedImage (200 , 100,
5BufferedImage.TYPE_INT_RGB);
6Graphics2D g2 = image.createGraphics ();
7CategoryPlot plot = new CategoryPlot ();
8Rectangle2D dataArea = new Rectangle2D.Double ();
9r.drawOutline(g2,plot ,dataArea);
10assertTrue(g2.getStroke ()==plot.getOutlineStroke ());
11}

Listing 14. Direct test for Listing 13 (Case 4)

81/**
82* <p>Sets whether to output short or long class names.</p>
83*
84* @param useShortClassName the new useShortClassName flag
85* @since 2.0
86*/
87@Override
88public void setUseShortClassName(final boolean useShortClassName) { // NOPMD as

this is implementing the abstract class
89super.setUseShortClassName(useShortClassName);
90}

Listing 15.
org.jfree.chart.renderer.category.AbstractCategoryItemRenderer::drawOutline (Case 5)

thereby, we did not manually detect equivalent mutants in this paper.

Construct validity The main threat to construct validity is the measurement we used to evaluate our
methods. We minimise this risk by adopting evaluation metrics that are widely used in research (such as
recall, precision and AUC), as well as a sound statistical analysis to assess the significance (Spearman’s
rank-order correlation).

8 RELATED WORK
The notion of software testability dates back to 1991 when Freedman [28] formally defined observability
and controllability in the domain of software. Voas [29] proposed a dynamic technique coined propagation,
infection, and execution (PIE) analysis for statistically estimating the program’s fault sensitivity. More
recently, researchers have aimed to increase our collective understanding of testability by using statistical
methods to predict testability based on various code metrics. An prime example is the work of Bruntink
and van Deursen [8], who have explored the relation between nine class-level object-oriented metrics and
testability. To the best of our knowledge, there is no study that uses statistical methods to investigate the
relation between code quality metrics based on testability and observability and mutation score.

Mutation testing was initially introduced as a fault-based testing method which was regarded as
significantly better at detecting errors than the covering measure approach [55]. Since then, mutation

1@Test
2public void testSetUseShortClassName (){
3assertTrue(STYLE.isUseShortClassName ());
4STYLE.setUseShortClassName(false);
5assertFalse(STYLE.isUseShortClassName ());
6STYLE.setUseShortClassName(true);
7assertTrue(STYLE.isUseShortClassName ());
8}

Listing 16. Additional assertions for Listing 15 (Case 5)

21/26

30/**
31* Construct the exception.
32*
33* @param max Maximum number of evaluations.
34*/
35public TooManyEvaluationsException(Number max) {
36super(max);
37getContext ().addMessage(LocalizedFormats.EVALUATIONS);
38}

Listing 17. org.apache.commons.math3.exception.TooManyEvaluationsException::<init>
(Case 6)

1public List <Localizable > getMsgPatterns (){
2return msgPatterns;
3}

Listing 18. Refactoring of Listing 17 (Case 6)

testing has been actively investigated and studied thereby resulting in remarkable advances in its concepts,
theory, technology and empirical evidence. For more literature on mutation testing, we refer to the existing
surveys of DeMillo [56], Offutt and Untch [57], Jia and Harman [1], Offutt [11] and Zhu et al. [12].
Here we mainly address the studies that concern mutant utility [22], the efficacy of mutation testing.
Yao et al. [27] have reported on the causes and prevalence of equivalent mutants and their relationship
to stubborn mutants based on a manual analysis of 1230 mutants. Just et al. [22] have shown a strong
correlation between mutant utility and context information from the program in which the mutant is
embedded. Brown et al. [24] have developed a method for creating potential faults that are more closely
coupled with changes made by actual programmers where they named “wild-caught mutants”. Chekam
et al. [58] have investigated the problem of selecting the fault revealing mutants. They put forward a
machine learning approach (decision trees) that learns to select fault revealing mutants from a set of static
program features. Jimenez et al. [26] investigated the use of natural language modelling techniques in
mutation testing. All above studies have enriched the understanding of mutation testing, especially its
efficacy. However, the aim of our work is different from those studies, as we would like to gain insights
into how code quality affects the efforts needed for mutation testing.

The study most related to ours is that of Zhang et al.’s predictive mutation testing, where they have
constructed a classification model to predict mutant killable result based on a series of features related to
mutants and tests. In their discussion, they compared source code related features and test code related
features in the prediction model for the mutation score. They found that test code features are more
important than source code ones. But from their results, we cannot draw clear conclusions on the impact
of code quality on mutation testing as their goal is to predict exact killable mutant results. Another
interesting work close to our study is Vera-Pérez et al. [59]’s pseudo-tested methods. Pseudo-tested
methods denote those methods that are covered by the test suite, but for which no test case fails even
if the entire method body is completely stripped. They rely on the idea of “extreme mutation”, which
completely strips out the body of a method. The difference between Vera-Pérez et al. [59]’s study and

1@Test

2public void testMsgPatterns() {

3final int max = 12345;
4final TooManyEvaluationsException e = new TooManyEvaluationsException(max);
5final String msg = e.getLocalizedMessage ();

6Assert.assertTrue(e.getContext().getMsgPatterns()

7.contains(LocalizedFormats.EVALUATIONS));

8}

Listing 19. Additional assertion for Listing 17 (Case 6)

22/26

ours is that we pay attention to conventional mutation operators rather than “extreme mutation”.

9 CONCLUSION & FUTURE WORK
This paper aims to increase our understanding of the mutation score, especially to investigate the re-
lationship between testability and observability metrics and the mutation score. More specifically, we
have collected 64 existing source code quality metrics for testability, and have proposed a set of metrics
that specifically target observability. The results from our empirical study involving 6 open-source
projects show that the 64 existing code quality metrics are not strongly correlated with the mutation score
(rho<0.27). In contrast, the 19 newly proposed mutant observability metrics, that are defined in terms of
both production code and test cases, do show stronger correlation with the mutation score (rho<0.5). In
particular, test directness, test distance and direct test no stand out.

In order to better understand the causality of our insights, we continued our investigation with a
manual analysis of 16 methods that scored particularly bad in terms of mutation score, i.e., a number of
mutants were not killed by the existing tests. In particular, we have refactored these methods according
to the anti-patterns that we established in terms of the mutant observability metrics. Our aim here was
to establish whether the removal of the observability anti-patterns would lead to an improvement of the
mutation score. We found that these anti-patterns can indeed offer software engineers actionable insights
to improve both the production code and the test suite, and improve the mutation score along with it. For
instance, we found that private methods (expressed as is public=0 in our schema) are prime candidates
to potentially refactor to increase their observability, e.g., by making them public or protected for testing
purpose.

Our approach is implemented in a prototype tool (coined MUTATION OBSERVER, openly available
on GitHub [36]) that automatically calculates mutant observability metrics. With our tool, and since
the results are encouraging, we envision the following future work: 1) conduct additional empirical
studies on more subject systems; 2) evaluate the usability of our mutant observability metrics by involving
practitioners; 3) investigate the relations between more code metrics (e.g., code readability) and mutation
score.

ACKNOWLEDGMENTS
This work has been partially funded by the Netherlands Organisation for Scientific Research (NWO)
through the “TestRoots” project. Further funding came from the EU Horizon 2020 ICT-10-2016-RIA
“STAMP” project (No.731529).

REFERENCES
[1] Y. Jia and M. Harman, “An analysis and survey of the development of mutation testing,” IEEE Trans.

Software Eng., vol. 37, no. 5, pp. 649–678, 2011.
[2] G. Petrovic, M. Ivankovic, B. Kurtz, P. Ammann, and R. Just, “An industrial application of mutation

testing: Lessons, challenges, and research directions,” in 2018 IEEE International Conference on
Software Testing, Verification and Validation Workshops (ICST Workshops), pp. 47–53, IEEE, 2018.

[3] H. Coles, “GitHub Repository for PIT.” https://github.com/hcoles/pitest. [Online; accessed
16-October-2018].

[4] H. Coles, “PIT Main Page.” http://pitest.org/. [Online; accessed 16-October-2018].
[5] G. Petrovic and M. Ivankovic, “State of mutation testing at Google,” in Proceedings of the Interna-

tional Conference on Software Engineering in Practice (ICSE SEIP), 2018.
[6] Q. Zhu and A. Zaidman, “Mutation testing for physical computing,” in 2018 IEEE International

Conference on Software Quality, Reliability and Security (QRS), pp. 289–300, IEEE, 2018.
[7] I. ISO, “Iso 9126/iso, iec (hrsg.): International standard iso/iec 9126: Information technology-

software product evaluation,” Quality Characteristics and Guidelines for their use, pp. 12–15, 1991.
[8] M. Bruntink and A. van Deursen, “An empirical study into class testability,” Journal of systems and

software, vol. 79, no. 9, pp. 1219–1232, 2006.

23/26

https://github.com/hcoles/pitest
http://pitest.org/

[9] M. Staats, M. W. Whalen, and M. P. Heimdahl, “Better testing through oracle selection (nier track),”
in Proceedings of the 33rd International Conference on Software Engineering, pp. 892–895, ACM,
2011.

[10] R. Binder, Testing object-oriented systems: models, patterns, and tools. Addison-Wesley Professional,
2000.

[11] J. Offutt, “A mutation carol: Past, present and future,” Information and Software Technology, vol. 53,
no. 10, pp. 1098–1107, 2011.

[12] Q. Zhu, A. Panichella, and A. Zaidman, “A systematic literature review of how mutation testing
supports quality assurance processes,” Software Testing, Verification and Reliability, vol. 28, no. 6,
p. e1675, 2018. e1675 stvr.1675.

[13] A. P. Mathur and W. E. Wong, “An empirical comparison of data flow and mutation-based test
adequacy criteria,” Software Testing, Verification and Reliability, vol. 4, no. 1, pp. 9–31, 1994.

[14] P. G. Frankl, S. N. Weiss, and C. Hu, “All-uses vs mutation testing: an experimental comparison of
effectiveness,” Journal of Systems and Software, vol. 38, no. 3, pp. 235–253, 1997.

[15] N. Li, U. Praphamontripong, and J. Offutt, “An experimental comparison of four unit test criteria: Mu-
tation, edge-pair, all-uses and prime path coverage,” in Software Testing, Verification and Validation
Workshops, 2009. ICSTW’09. International Conference on, pp. 220–229, IEEE, 2009.

[16] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an appropriate tool for testing experiments?,”
in International Conference on Software Engineering, pp. 402–411, IEEE, 2005.

[17] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser, “Are mutants a valid
substitute for real faults in software testing?,” in Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pp. 654–665, ACM, 2014.

[18] L. Madeyski, W. Orzeszyna, R. Torkar, and M. Józala, “Overcoming the equivalent mutant problem:
A systematic literature review and a comparative experiment of second order mutation,” Software
Engineering, IEEE Transactions on, vol. 40, no. 1, pp. 23–42, 2014.

[19] P. Ammann and J. Offutt, Introduction to Software Testing, 2nd edition. Cambridge University Press,
2017.

[20] L. Inozemtseva and R. Holmes, “Coverage is not strongly correlated with test suite effectiveness,”
in Proceedings of the 36th International Conference on Software Engineering, pp. 435–445, ACM,
2014.

[21] “GitHub Repository for Mull.” https://github.com/mull-project/mull. [Online; accessed
19-October-2018].

[22] R. Just, B. Kurtz, and P. Ammann, “Inferring mutant utility from program context,” in Proceedings of
the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis, pp. 284–294,
ACM, 2017.

[23] B. Kurtz, P. Ammann, M. E. Delamaro, J. Offutt, and L. Deng, “Mutant subsumption graphs,” in
Software testing, verification and validation workshops (ICSTW), 2014 IEEE seventh international
conference on, pp. 176–185, IEEE, 2014.

[24] D. B. Brown, M. Vaughn, B. Liblit, and T. Reps, “The care and feeding of wild-caught mutants,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering, pp. 511–522,
ACM, 2017.

[25] M. Papadakis, D. Shin, S. Yoo, and D.-H. Bae, “Are mutation scores correlated with real fault
detection? a large scale empirical study on the relationship between mutants and real faults,” in 40th
International Conference on Software Engineering, May 27-3 June 2018, Gothenburg, Sweden, 2018.

[26] M. Jimenez, T. Titcheu Chekam, M. Cordy, M. Papadakis, M. Kintis, Y. Le Traon, and M. Harman,
“Are mutants really natural? a study on how naturalness helps mutant selection,” in 12th International
Symposium on Empirical Software Engineering and Measurement (ESEM’18), 2018.

[27] X. Yao, M. Harman, and Y. Jia, “A study of equivalent and stubborn mutation operators using
human analysis of equivalence,” in Proceedings of the 36th International Conference on Software
Engineering, pp. 919–930, ACM, 2014.

24/26

https://github.com/mull-project/mull

[28] R. S. Freedman, “Testability of software components,” IEEE transactions on Software Engineering,
vol. 17, no. 6, pp. 553–564, 1991.

[29] J. M. Voas, “Pie: A dynamic failure-based technique,” IEEE Transactions on software Engineering,
vol. 18, no. 8, pp. 717–727, 1992.

[30] “JHawk.” http://www.virtualmachinery.com/jhawkprod.htm. [Online; accessed 16-October-
2018].

[31] R. E. Kalman, P. L. Falb, and M. A. Arbib, Topics in mathematical system theory, vol. 1. McGraw-Hill
New York, 1969.

[32] M. Whalen, G. Gay, D. You, M. P. Heimdahl, and M. Staats, “Observable modified condition/decision
coverage,” in Software Engineering (ICSE), 2013 35th International Conference on, pp. 102–111,
IEEE, 2013.

[33] R. Gopinath, C. Jensen, and A. Groce, “The theory of composite faults,” in Software Testing,
Verification and Validation (ICST), 2017 IEEE International Conference on, pp. 47–57, IEEE, 2017.

[34] D. Athanasiou, A. Nugroho, J. Visser, and A. Zaidman, “Test code quality and its relation to issue
handling performance,” IEEE Transactions on Software Engineering, vol. 40, no. 11, pp. 1100–1125,
2014.

[35] J. Zhang, L. Zhang, M. Harman, D. Hao, Y. Jia, and L. Zhang, “Predictive mutation testing,” IEEE
Transactions on Software Engineering, pp. 1–1, 2018.

[36] Q. Zhu, “GitHub Repository for Mutation Observer.” https://zenodo.org/badge/latestdoi/
147203995, 2019. [Online; accessed 18-January-2019].

[37] “Antlr.” http://www.antlr.org/. [Online; accessed 29-October-2018].
[38] “Apache Commons BCEL.” https://commons.apache.org/proper/commons-bcel/. [Online;

accessed 29-October-2018].
[39] “java-callgraph GitHub Repositry.” https://github.com/gousiosg/java-callgraph. [Online;

accessed 29-October-2018].
[40] H. Coles, “PIT Mutation Operators.” http://pitest.org/quickstart/mutators/. [Online; ac-

cessed 30-October-2018].
[41] D. E. Hinkle, W. Wiersma, S. G. Jurs, et al., Applied statistics for the behavioral sciences. Houghton

Mifflin Boston, 1988.
[42] L. Breiman, “Random forests,” Machine Learning, vol. 45, pp. 5–32, Oct 2001.
[43] E. Frank, M. A. Hall, and I. H. Witten, The WEKA Workbench. Online Appendix for ”Data Mining:

Practical Machine Learning Tools and Techniques”. Morgan Kaufmann, 4 ed., 2016.
[44] J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques. Elsevier, 2011.
[45] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-

hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine Learning Research,
vol. 12, pp. 2825–2830, 2011.

[46] R. Quinlan, C4.5: Programs for Machine Learning. San Mateo, CA: Morgan Kaufmann, 1993.
[47] M. R. Woodward, M. A. Hennell, and D. Hedley, “A measure of control flow complexity in program

text,” IEEE Transactions on Software Engineering, no. 1, pp. 45–50, 1979.
[48] G. K. Gill and C. F. Kemerer, “Cyclomatic complexity density and software maintenance productivity,”

IEEE transactions on software engineering, vol. 17, no. 12, pp. 1284–1288, 1991.
[49] N. E. Fenton and N. Ohlsson, “Quantitative analysis of faults and failures in a complex software

system,” IEEE Transactions on Software engineering, vol. 26, no. 8, pp. 797–814, 2000.
[50] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,” Chemometrics and intelligent

laboratory systems, vol. 2, no. 1-3, pp. 37–52, 1987.
[51] L. Moonen, A. van Deursen, A. Zaidman, and M. Bruntink, “On the interplay between software

testing and evolution and its effect on program comprehension,” in Software evolution (T. Mens and
S. Demeyer, eds.), pp. 173–202, Springer, 2008.

25/26

http://www.virtualmachinery.com/jhawkprod.htm
https://zenodo.org/badge/latestdoi/147203995
https://zenodo.org/badge/latestdoi/147203995
http://www.antlr.org/
https://commons.apache.org/proper/commons-bcel/
https://github.com/gousiosg/java-callgraph
http://pitest.org/quickstart/mutators/

[52] F. Palomba, A. Panichella, A. Zaidman, R. Oliveto, and A. D. Lucia, “Automatic test case generation:
What if test code quality matters?,” in Proceedings of the International Symposium on Software
Testing and Analysis (ISSTA), pp. 130–141, ACM, 2016.

[53] B. Kurtz, P. Ammann, J. Offutt, M. E. Delamaro, M. Kurtz, and N. Gökçe, “Analyzing the validity
of selective mutation with dominator mutants,” in Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pp. 571–582, ACM, 2016.

[54] H. Coles, “Mutation testing - a practitioners perspective.” https://github.com/hcoles/slides/
blob/master/slides.pdf. Accessed: 2017-05-09.

[55] T. A. Budd, R. J. Lipton, R. A. DeMillo, and F. G. Sayward, Mutation analysis. Yale University,
Department of Computer Science, 1979.

[56] R. A. DeMillo, “Test adequacy and program mutation,” in Software Engineering, 1989. 11th Interna-
tional Conference on, pp. 355–356, May 1989.

[57] A. J. Offutt and R. H. Untch, “Mutation 2000: Uniting the orthogonal,” in Mutation testing for the
new century, pp. 34–44, Springer, 2001.

[58] T. T. Chekam, M. Papadakis, T. Bissyandé, Y. L. Traon, and K. Sen, “Selecting fault revealing
mutants,” arXiv preprint arXiv:1803.07901, 2018.

[59] O. L. Vera-Pérez, B. Danglot, M. Monperrus, and B. Baudry, “A comprehensive study of pseudo-
tested methods,” Empirical Software Engineering, pp. 1–31, 2017.

26/26

https://github.com/hcoles/slides/blob/master/slides.pdf
https://github.com/hcoles/slides/blob/master/slides.pdf

	Introduction
	Background
	Mutation Testing
	Existing Object-Oriented Metrics for Testability

	Mutant Observability
	Experimental Setup
	Subject Systems
	Tool implementation
	Design of Experiment
	Evaluation Metrics

	RQ1 - RQ3 testability versus observability versus combination
	Spearman's rank order correlation
	Testability
	Observability

	Random forests

	RQ4 Code Refactoring
	Case 1: org.jfree.chart.plot.MeterPlot::drawValueLabel
	Case 2: org.jfree.chart.axis.SymbolAxis::drawGridBands
	Case 3: org.apache.commons.lang3.builder.IDKey::hashCode
	Case 4: org.jfree.chart.renderer.category.AbstractCategoryItemRenderer::drawOutline
	Case 5: org.jfree.chart.renderer.category.AbstractCategoryItemRenderer::drawOutline
	Case 6: org.apache.commons.math3.exception.TooManyEvaluationsException::<init>
	RQ4 Summary

	Threats to Validity
	Related work
	Conclusion & Future Work
	References

