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Cost reduction techniques

m Do fewer: selecting fewer mutants;

E.g., Selective Mutation

m Do smarter: avoiding unnecessary test executions;
E.g., Weak Mutation

m Do faster: reducing the execution time;

E.g., Mutation Schemata

Challenged by Gopinath et al. (ICSE 2016, TR 2017):
No practical advantage over pure random sampling
Offutt and Untch 2000
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For a test case t to kill a mutant m which mutates the
statement s of a program P, there are three conditions:

Program:
1 int fun(int a, int b)Y
intc;
if(a>0)
c=a+b;
else Mutant;

m Necessity — (weak mutation c=a-b;-» c=a+b
return abs(c);
= Sufficiency — (strong mutation —

Test:
assertEquals(fun(0,-1),1)

m Reachability — statement coverage
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Overall methodology
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Mutant clustering

Based on weak mutation

e Overlapped grouping
elements are only grouped together if they are
identical

e FCA-based grouping
Formal Concept Analysis; convey binary relations

-
[
o

1 b
1

t
my| 0
my| 1
m3| 0
myl 0
ms| ]
1

_—_0 © O
SO = O OO
SO O = O O |k

mg




Mutant clustering

Based on weak mutation

e Overlapped grouping
elements are only grouped together if they are
identical

o FCA-based grouping
Formal Concept Analysis; convey binary relations

4 B
1

-

[’
-

ES

m

my .
overlapped
groupings

Y. Y. Y.Y

m3
my
ms

- — o o~ o
—_——— O O
co~oc oo
cooi~mioo

Y.

mg




Mutant clustering

Based on weak mutation
e Overlapped grouping
elements are only grouped together if they are
identical

e FCA-based grouping
Formal Concept Analysis; convey binary relations
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Mutant selection strategies

@ Cluster-based selection (CS)
randomly chooses one mutant from each cluster
e CS 4+ mutation operator type (mop)
divide each cluster into partitions by mutation operator types
and then random selection
e CS 4+ mutation location (mloc)
divide each cluster into partitions by mutant locations and

then random selection
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Empirical study

= 20 open-source projects (Java): 397K+ LOC,
2K+ tests, 166K+ mutants

m 6+2 methods:
. overlap . fca « pure random
. overlap+mop .« fca+mop . weak mutation
« overlap+mloc . fca+mloc
m Research questions:
e« RQ1: How accurate are different compression techniques?
e« RQ2: How do compression techniques perform in terms of speed-up?

e« RQ3: What is the trade-off between accuracy and speed-up?
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RQ1: accuracy performance

e Absolute error
AE(C, T) =| strongmu(C, T) — estimatedu(C, T) | (1)
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RQ2: Speed-up performance

e Speed-up
exec_time(strong _mutation)

speed-up =
peed-tp exec_time(approach)

(2)

@ Results:
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RQ3: Trade-off

Speed-up v.s. absolute error (mean)
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RQ3: Trade-off

Speed-up v.s. prediction accuracy (mean)
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RQ3: Trade-off

Speed-up v.s. prediction accuracy (mean)
-
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Random sampling cannot predicate results for all mutants
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@ Mutation compression v.s. random sampling:

e Mutation compression: speed-up 1 and accuracy 1

e Killable mutant results outperform overall mutation score
@ Mutation location trumps mutation operator
o Future work:

e Combining mutation operator and mutation location
e Exploring other compression techniques
e Applying to test-data generation
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