An Investigation of Compression

Techniques to Speed up Mutation
Testing

Qiangian Zhu
Ph.D. student

Co-authors: Annibale Panichella and Andy Zaidman

Software Engineering Research Group,
Delft University of Technology, Netherlands

ICST 2018, April 12, 2018

Mutation Testing

An actively investigated field since 1970s

Mutation Testing

An actively investigated field since 1970s

m Main idea: small syntactic changes — test suite quality

Mutation Testing

An actively investigated field since 1970s
m Main idea: small syntactic changes — test suite quality

m Benefit:
. better fault exposing capability
. a good alternative to real faults

Mutation Testing

An actively investigated field since 1970s
m Main idea: small syntactic changes — test suite quality

m Benefit:
. better fault exposing capability
. a good alternative to real faults
= limitations:
« high computational cost
. undecidable Equivalent Mutant Problem

Mutation Testing

An actively investigated field since 1970s
m Main idea: small syntactic changes — test suite quality

m Benefit:
. better fault exposing capability
. a good alternative to real faults

a limitations:

(. high computational cost]/){
. undecidable Equivalent Mutant Problem

Our paper: speed up

Cost reduction techniques

Cost reduction techniques

m Do fewer: selecting fewer mutants;
E.g., Selective Mutation

Offutt and Untch 2000

3

Cost reduction techniques

m Do fewer: selecting fewer mutants;
E.g., Selective Mutation

m Do smarter: avoiding unnecessary test executions;
E.g., Weak Mutation

Offutt and Untch 2000

3

Cost reduction techniques

m Do fewer: selecting fewer mutants;
E.g., Selective Mutation

m Do smarter: avoiding unnecessary test executions;
E.g., Weak Mutation

m Do faster: reducing the execution time;
E.g., Mutation Schemata

Offutt and Untch 2000

3

Cost reduction techniques

m Do fewer: selecting fewer mutants;

E.g., Selective Mutation

m Do smarter: avoiding unnecessary test executions;
E.g., Weak Mutation

m Do faster: reducing the execution time;

E.g., Mutation Schemata

Offutt and Untch 2000

3

Cost reduction techniques

m Do fewer: selecting fewer mutants;

E.g., Selective Mutation

m Do smarter: avoiding unnecessary test executions;
E.g., Weak Mutation

m Do faster: reducing the execution time;

E.g., Mutation Schemata

Challenged by Gopinath et al. (ICSE 2016, TR 2017):
No practical advantage over pure random sampling
Offutt and Untch 2000

3

Mutation data compression

IS

Mutation data compression

1A
=

Mutation data compression

647 KB 19 KB

M1 T1
M2 T2
M3 T3
M4 T4

16 tests executed

M1 T
M2 12
M3 T3
M4 T4

16 tests executed

—

19KB

M1 T4
M2 ><:T2
M3 T3
Mé T T4

3 tests executed

For a test case t to kill a mutant m which mutates the
statement s of a program P, there are three conditions:

For a test case t to kill a mutant m which mutates the
statement s of a program P, there are three conditions:

m Reachability
m Necessity

m Sufficiency

For a test case t to kill a mutant m which mutates the
statement s of a program P, there are three conditions:

Program:

1 int fun(int a, int b)Y
intc;
if(a=>0)

c=a+b;
else

c=a-b;
return abs(c);

}

m Reachability

m Necessity

oO~NOO A~ WM

m Sufficiency

Test:
assertEquals(fun(0,-1),1)

For a test case t to kill a mutant m which mutates the
statement s of a program P, there are three conditions:

Program:

1 int fun(int a, int b)Y
intc;
if(a=>0)

c=a+b;
else Mutant:

c=a-b;—>»c=a+b
return abs(c);

}

m Reachability

m Necessity

oO~NOO A~ WM

m Sufficiency

Test:
assertEquals(fun(0,-1),1)

For a test case t to kill a mutant m which mutates the
statement s of a program P, there are three conditions:

Program:
1 int fun(int a, int b)Y
2 intc;
m Reachability — statement coverage (3 if(a>0)
4 c=a+b;
) 5 else Mutant:
m Necessity 6 c=a-b;>»c=a+b
7 return abs(c);
= Sufficiency 8}
Test:

assertEquals(fun(0,-1),1)

For a test case t to kill a mutant m which mutates the
statement s of a program P, there are three conditions:

Program:
1 int fun(int a, int b)Y
2 intc;
m Reachability — statement coverage 2 if(a>0)b
c=a+b;
. . 5 else Mutant
m Necessity — weak mutation 6 c=a-b; »c=a+b
7 return abs(c);
= Sufficiency 8}
Test:

assertEquals(fun(0,-1),1)

For a test case t to kill a mutant m which mutates the
statement s of a program P, there are three conditions:

Program:
1 int fun(int a, int b)Y
2 intc;
m Reachability — statement coverage 2 if(a>0)b
c=a+D,
. . 5 else Mutant
m Necessity — weak mutation 6 c=a-by > c=a+b
7 return abs(c);
= Sufficiency — strong mutation —
Test:

assertEquals(fun(0,-1),1)

For a test case t to kill a mutant m which mutates the
statement s of a program P, there are three conditions:

Program:
1 int fun(int a, int b)Y
intc;
if(a>0)
c=a+b;
else Mutant;

m Necessity — (weak mutation c=a-b;-» c=a+b
return abs(c);
= Sufficiency — (strong mutation —

Test:
assertEquals(fun(0,-1),1)

m Reachability — statement coverage

NN

Overall methodology

insert

mstructions

mutant & test selection

mutation

execution |

instrumented

PR S
C RN N

@weak mutation matrix
t t
run test 12 ty
. m
suite

compress
matrix

<

<<
<<

l@

mutant
clustering

t &

ty

<L<

vy
vy
vy

vy
Y Y

Mutant clustering

Based on weak mutation

e Overlapped grouping
elements are only grouped together if they are
identical

e FCA-based grouping
Formal Concept Analysis; convey binary relations

-
[
o

1 b
1

t
my| 0
my| 1
m3| 0
myl 0
ms|]
1

_—_0 © O
SO = O OO
SO O = O O |k

mg

Mutant clustering

Based on weak mutation

e Overlapped grouping
elements are only grouped together if they are
identical

o FCA-based grouping
Formal Concept Analysis; convey binary relations

4 B
1

-

[’
-

ES

m

my .
overlapped
groupings

Y. Y. Y.Y

m3
my
ms

- — o o~ o
—_——— O O
co~oc oo
cooi~mioo

Y.

mg

Mutant clustering

Based on weak mutation
e Overlapped grouping
elements are only grouped together if they are
identical

e FCA-based grouping
Formal Concept Analysis; convey binary relations

t th t3 ty
my 0 100>
myf: 10 Q0| . i
7 overlappe
| gty @l Ty OVOR APP
FCA groupings
groupings {tp.th} {t3} {ts} grouping < < My Q- Q- 1 01>
msi 1 10 0
< E »:
mgl:] 1 0 O

{tt,tta)

Mutant selection strategies

@ Cluster-based selection (CS)
randomly chooses one mutant from each cluster
e CS 4+ mutation operator type (mop)
divide each cluster into partitions by mutation operator types
and then random selection
e CS 4+ mutation location (mloc)
divide each cluster into partitions by mutant locations and

then random selection

mop | mloc
mp| 1 Line5
my| 1 Line5
m3 2 Line5
my| 2 | Line6

10

Mutant selection strategies

@ Cluster-based selection (CS)
randomly chooses one mutant from each cluster
e CS 4+ mutation operator type (mop)
divide each cluster into partitions by mutation operator types
and then random selection
e CS 4+ mutation location (mloc)
divide each cluster into partitions by mutant locations and

then random selection

|m0p mloc
my| 1 Line5

mp] Line5
m3 | 2 Line5
my 2 Line6

11

Mutant selection strategies

@ Cluster-based selection (CS)
randomly chooses one mutant from each cluster
e CS 4+ mutation operator type (mop)
divide each cluster into partitions by mutation operator types
and then random selection
e CS 4+ mutation location (mloc)
divide each cluster into partitions by mutant locations and

then random selection

| mop | mloc |
my 1 | Line5

12

Mutant selection strategies

@ Cluster-based selection (CS)
randomly chooses one mutant from each cluster
e CS 4+ mutation operator type (mop)
divide each cluster into partitions by mutation operator types
and then random selection
e CS 4+ mutation location (mloc)
divide each cluster into partitions by mutant locations and

then random selection

| mop | mloc
mp| 1 | Line5

13

Empirical study

= 20 open-source projects (Java): 397K+ LOC,
2K+ tests, 166K+ mutants

m 6+2 methods:
. overlap . fca « pure random
. overlap+mop .« fca+mop . weak mutation
« overlap+mloc . fca+mloc
m Research questions:
e« RQ1: How accurate are different compression techniques?
e« RQ2: How do compression techniques perform in terms of speed-up?

e« RQ3: What is the trade-off between accuracy and speed-up?

14

Empirical study

= 20 open-source projects (Java): 397K+ LOC,
2K+ tests, 166K+ mutants

m 64+2 methods:

. overlap . fca « pure random
. overlap+mop .« fca+mop |. weak mutation
« overlap+mloc . fca+mloc l

» Research questions: baselines

e« RQ1: How accurate are different compression techniques?
e« RQ2: How do compression techniques perform in terms of speed-up?

e« RQ3: What is the trade-off between accuracy and speed-up?

14

RQ1: accuracy performance

e Absolute error
AE(C, T) =| strongmu(C, T) — estimatedu(C, T) | (1)

@ Results:

0.3 . ,
St
2025 i
= +
b) . . +
£ 02 + I + T J
E ‘ \
i 0.15F — Q Lo
|
o1t E é T ‘ n
n s
L T |
| = 3 !
't @ O 0 @ @ © —©®
© > © NS
AZJ&\‘bQ g &OQ . N S &OQ . & Qbo& &
N ¢ ¢
N N

method comparison 15

RQ1: accuracy performance

e Absolute error
AE(C, T) =| strongmu(C, T) — estimatedu(C, T) | (1)

@ Results:

o
L
D

04F T T T T T T B
|
|
|

=)
o o o
oo W
- +
. \ \ .

o
O

S
oo {1

Absolute error

0.05

: ; ok]
Friedman's test—% ¢ ¢ 2 ¢ 299

method comparison 15

RQ2: Speed-up performance

e Speed-up
exec_time(strong _mutation)

speed-up =
peed-tp exec_time(approach)

(2)

@ Results:

= N o0
T T T

Speed-up(log)
W B W
i
-
+
+

H1 k-

® HIF-
L F
® H{[FA
—

= ==
Ir i oL 1
EROAENO a0 O O (e O s O
é§9 <9Q é§9 & <§S é§9 & $§?
S &x QX c?x L <§
4é\» é\qy &§ Ry
N S

method comparison 16

RQ2: Speed-up performance

e Speed-up
exec_time(strong _mutation)

speed-up =
peed-tp exec_time(approach)

(2)

@ Results:

= = o0
T T T

Speed-up(log)
W
i
-
+
+

%) EN
T T

R

H} .
L
F{ R
b

==
.) 1 L 1L
Friedman’s test @@ O @ O @ @
R R & & N & & N
3 & N 5§ & S S &
& o8 QXQ & %6‘ & N
4é\» A@‘\‘D &§ Ry

method comparison 16

RQ3: Trade-off

Speed-up v.s. absolute error (mean)

7 -
Aweak
6 |-
5 |-
o8
=
=
Sat
=
3
& <fca
3 |-
coverla
*fca+mo
2r +overlap+mop
overlap+mloc tea+tmloc orandom
1 , , , ,)
0 0.05 0.1 0.15 0.2 0.25

Absolute error

17

RQ3: Trade-off

Speed-up v.s. prediction accuracy (mean)
-

A weak

W
T

Speed-up(log)
N

< fea

3 L

O overlap

* fca+mop
2r + overlap+mop
fca+mloc
| overlap+mloc |

0.75 0.8 0.85 0.9 0.95

Accuracy

18

RQ3: Trade-off

Speed-up v.s. prediction accuracy (mean)
-

A weak

Random sampling cannot predicate results for all mutants

W
T

Speed-up(log)
N

< fea
3 L
O overlap
* fca+mop
2+ + overlap+mop
fca+mloc
| overlap+mloc |
0.75 0.8 0.85 0.9

0.95
Accuracy

18

19

@ Mutation compression v.s. random sampling:

19

@ Mutation compression v.s. random sampling:

e Mutation compression: speed-up 1 and accuracy 1
e Killable mutant results outperform overall mutation score

19

@ Mutation compression v.s. random sampling:

e Mutation compression: speed-up 1 and accuracy 1
e Killable mutant results outperform overall mutation score

@ Mutation location trumps mutation operator

19

@ Mutation compression v.s. random sampling:

e Mutation compression: speed-up 1 and accuracy 1

e Killable mutant results outperform overall mutation score
@ Mutation location trumps mutation operator
o Future work:

e Combining mutation operator and mutation location
e Exploring other compression techniques
e Applying to test-data generation

19

