
An Investigation of Compression
Techniques to Speed up Mutation

Testing

Qianqian Zhu
Ph.D. student

Co-authors: Annibale Panichella and Andy Zaidman

Software Engineering Research Group,
Delft University of Technology, Netherlands

ICST 2018, April 12, 2018

Mutation Testing

An actively investigated field since 1970s

� Main idea: small syntactic changes → test suite quality

� Benefit:
• better fault exposing capability

• a good alternative to real faults

� limitations:
• high computational cost

• undecidable Equivalent Mutant Problem

Our paper: speed up

2

Mutation Testing

An actively investigated field since 1970s

� Main idea: small syntactic changes → test suite quality

� Benefit:
• better fault exposing capability

• a good alternative to real faults

� limitations:
• high computational cost

• undecidable Equivalent Mutant Problem

Our paper: speed up

2

Mutation Testing

An actively investigated field since 1970s

� Main idea: small syntactic changes → test suite quality

� Benefit:
• better fault exposing capability

• a good alternative to real faults

� limitations:
• high computational cost

• undecidable Equivalent Mutant Problem

Our paper: speed up

2

Mutation Testing

An actively investigated field since 1970s

� Main idea: small syntactic changes → test suite quality

� Benefit:
• better fault exposing capability

• a good alternative to real faults

� limitations:
• high computational cost

• undecidable Equivalent Mutant Problem

Our paper: speed up

2

Mutation Testing

An actively investigated field since 1970s

� Main idea: small syntactic changes → test suite quality

� Benefit:
• better fault exposing capability

• a good alternative to real faults

� limitations:
• high computational cost

• undecidable Equivalent Mutant Problem

Our paper: speed up

2

Cost reduction techniques

� Do fewer: selecting fewer mutants;

E.g., Selective Mutation

� Do smarter: avoiding unnecessary test executions;

E.g., Weak Mutation

� Do faster: reducing the execution time;

E.g., Mutation Schemata

Challenged by Gopinath et al. (ICSE 2016,TR 2017):

No practical advantage over pure random sampling

Offutt and Untch 2000

3

Cost reduction techniques

� Do fewer: selecting fewer mutants;

E.g., Selective Mutation

� Do smarter: avoiding unnecessary test executions;

E.g., Weak Mutation

� Do faster: reducing the execution time;

E.g., Mutation Schemata

Challenged by Gopinath et al. (ICSE 2016,TR 2017):

No practical advantage over pure random sampling

Offutt and Untch 2000

3

Cost reduction techniques

� Do fewer: selecting fewer mutants;

E.g., Selective Mutation

� Do smarter: avoiding unnecessary test executions;

E.g., Weak Mutation

� Do faster: reducing the execution time;

E.g., Mutation Schemata

Challenged by Gopinath et al. (ICSE 2016,TR 2017):

No practical advantage over pure random sampling

Offutt and Untch 2000

3

Cost reduction techniques

� Do fewer: selecting fewer mutants;

E.g., Selective Mutation

� Do smarter: avoiding unnecessary test executions;

E.g., Weak Mutation

� Do faster: reducing the execution time;

E.g., Mutation Schemata

Challenged by Gopinath et al. (ICSE 2016,TR 2017):

No practical advantage over pure random sampling

Offutt and Untch 2000

3

Cost reduction techniques

� Do fewer: selecting fewer mutants;

E.g., Selective Mutation

� Do smarter: avoiding unnecessary test executions;

E.g., Weak Mutation

� Do faster: reducing the execution time;

E.g., Mutation Schemata

Challenged by Gopinath et al. (ICSE 2016,TR 2017):

No practical advantage over pure random sampling

Offutt and Untch 2000

3

Cost reduction techniques

� Do fewer: selecting fewer mutants;

E.g., Selective Mutation

� Do smarter: avoiding unnecessary test executions;

E.g., Weak Mutation

� Do faster: reducing the execution time;

E.g., Mutation Schemata

Challenged by Gopinath et al. (ICSE 2016,TR 2017):

No practical advantage over pure random sampling

Offutt and Untch 2000

3

Mutation data compression

647 KB 19 KB

16 tests executed 3 tests executed
4

Mutation data compression

647 KB 19 KB

16 tests executed 3 tests executed
4

Mutation data compression

647 KB 19 KB

16 tests executed 3 tests executed
4

Mutation data compression

647 KB 19 KB

16 tests executed 3 tests executed
4

Mutation data compression

647 KB 19 KB

16 tests executed 3 tests executed
4

Weak Mutation

For a test case t to kill a mutant m which mutates the
statement s of a program P, there are three conditions:

� Reachability

� Necessity

� Sufficiency

→ statement coverage

→ weak mutation

→ strong mutation

5

Weak Mutation

For a test case t to kill a mutant m which mutates the
statement s of a program P, there are three conditions:

� Reachability

� Necessity

� Sufficiency

→ statement coverage

→ weak mutation

→ strong mutation

5

Weak Mutation

For a test case t to kill a mutant m which mutates the
statement s of a program P, there are three conditions:

� Reachability

� Necessity

� Sufficiency

→ statement coverage

→ weak mutation

→ strong mutation

5

Weak Mutation

For a test case t to kill a mutant m which mutates the
statement s of a program P, there are three conditions:

� Reachability

� Necessity

� Sufficiency

→ statement coverage

→ weak mutation

→ strong mutation

5

Weak Mutation

For a test case t to kill a mutant m which mutates the
statement s of a program P, there are three conditions:

� Reachability

� Necessity

� Sufficiency

→ statement coverage

→ weak mutation

→ strong mutation

5

Weak Mutation

For a test case t to kill a mutant m which mutates the
statement s of a program P, there are three conditions:

� Reachability

� Necessity

� Sufficiency

→ statement coverage

→ weak mutation

→ strong mutation

5

Weak Mutation

For a test case t to kill a mutant m which mutates the
statement s of a program P, there are three conditions:

� Reachability

� Necessity

� Sufficiency

→ statement coverage

→ weak mutation

→ strong mutation

5

Weak Mutation

For a test case t to kill a mutant m which mutates the
statement s of a program P, there are three conditions:

� Reachability

� Necessity

� Sufficiency

→ statement coverage

→ weak mutation

→ strong mutation

5

Overall methodology

6

Mutant clustering

Based on weak mutation

Overlapped grouping
elements are only grouped together if they are
identical

FCA-based grouping
Formal Concept Analysis; convey binary relations

7

Mutant clustering

Based on weak mutation

Overlapped grouping
elements are only grouped together if they are
identical

FCA-based grouping
Formal Concept Analysis; convey binary relations

8

Mutant clustering

Based on weak mutation

Overlapped grouping
elements are only grouped together if they are
identical

FCA-based grouping
Formal Concept Analysis; convey binary relations

9

Mutant selection strategies

Cluster-based selection (CS)
randomly chooses one mutant from each cluster

CS + mutation operator type (mop)
divide each cluster into partitions by mutation operator types

and then random selection

CS + mutation location (mloc)
divide each cluster into partitions by mutant locations and

then random selection

mop

m3
m4

m1
m2

mloc
1
1
2
2

Line5
Line5
Line5
Line6

10

Mutant selection strategies

Cluster-based selection (CS)
randomly chooses one mutant from each cluster

CS + mutation operator type (mop)
divide each cluster into partitions by mutation operator types

and then random selection

CS + mutation location (mloc)
divide each cluster into partitions by mutant locations and

then random selection

mop

m3
m4

m1
m2

mloc
1
1
2
2

Line5
Line5
Line5
Line6

11

Mutant selection strategies

Cluster-based selection (CS)
randomly chooses one mutant from each cluster

CS + mutation operator type (mop)
divide each cluster into partitions by mutation operator types

and then random selection

CS + mutation location (mloc)
divide each cluster into partitions by mutant locations and

then random selection

mop

m3
m4

m1
m2

mloc
1
1
2
2

Line5
Line5
Line5
Line6

12

Mutant selection strategies

Cluster-based selection (CS)
randomly chooses one mutant from each cluster

CS + mutation operator type (mop)
divide each cluster into partitions by mutation operator types

and then random selection

CS + mutation location (mloc)
divide each cluster into partitions by mutant locations and

then random selection

mop

m3
m4

m1
m2

mloc
1
1
2
2

Line5
Line5
Line5
Line6

13

Empirical study

� 20 open-source projects (Java): 397K+ LOC,

2K+ tests, 166K+ mutants

� 6+2 methods:

• overlap

• overlap+mop

• overlap+mloc

• fca

• fca+mop

• fca+mloc

• pure random

• weak mutation

baselines
� Research questions:

• RQ1: How accurate are different compression techniques?

• RQ2: How do compression techniques perform in terms of speed-up?

• RQ3: What is the trade-off between accuracy and speed-up?

14

Empirical study

� 20 open-source projects (Java): 397K+ LOC,

2K+ tests, 166K+ mutants

� 6+2 methods:

• overlap

• overlap+mop

• overlap+mloc

• fca

• fca+mop

• fca+mloc

• pure random

• weak mutation

baselines
� Research questions:

• RQ1: How accurate are different compression techniques?

• RQ2: How do compression techniques perform in terms of speed-up?

• RQ3: What is the trade-off between accuracy and speed-up?

14

RQ1: accuracy performance

Absolute error

AE (C ,T) =| strongM(C ,T)− estimatedM(C ,T) | (1)

Results:

ov
er

la
p

ov
er

la
p+

m
op

ov
er

la
p+

m
lo

c
fc

a

fc
a+

m
op

fc
a+

m
lo

c

ra
nd

om
w

ea
k

method comparison

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

A
b

so
lu

te
 e

rr
o
r

1 23 45 67 8Friedman’s test

15

RQ1: accuracy performance

Absolute error

AE (C ,T) =| strongM(C ,T)− estimatedM(C ,T) | (1)

Results:

ov
er

la
p

ov
er

la
p+

m
op

ov
er

la
p+

m
lo

c
fc

a

fc
a+

m
op

fc
a+

m
lo

c

ra
nd

om
w

ea
k

method comparison

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

A
b

so
lu

te
 e

rr
o
r

1 23 45 67 8Friedman’s test

15

RQ2: Speed-up performance

Speed-up

speed -up =
exec time(strong mutation)

exec time(approach)
(2)

Results:

ov
erl
ap

ov
erl
ap
+m
op

ov
erl
ap
+m
loc fca

fca
+m
op

fca
+m
loc

ran
do
m

we
ak

method comparison

1

2

3

4

5

6

7

8

S
p
e
e
d
-
u
p
(
l
o
g
)

123 4 75 68Friedman’s test

16

RQ2: Speed-up performance

Speed-up

speed -up =
exec time(strong mutation)

exec time(approach)
(2)

Results:

ov
erl
ap

ov
erl
ap
+m
op

ov
erl
ap
+m
loc fca

fca
+m
op

fca
+m
loc

ran
do
m

we
ak

method comparison

1

2

3

4

5

6

7

8

S
p
e
e
d
-
u
p
(
l
o
g
)

123 4 75 68Friedman’s test

16

RQ3: Trade-off

Speed-up v.s. absolute error (mean)

0 0.05 0.1 0.15 0.2 0.25

Absolute error

1

2

3

4

5

6

7
S

p
ee

d
-u

p
(l

o
g

)

overlap

overlap+mop

overlap+mloc

fca

fca+mop

fca+mloc random

weak

17

RQ3: Trade-off

Speed-up v.s. prediction accuracy (mean)

0.75 0.8 0.85 0.9 0.95

Accuracy

1

2

3

4

5

6

7
S

p
ee

d
-u

p
(l

o
g

)

overlap

overlap+mop

overlap+mloc

fca

fca+mop

fca+mloc

weak

Random sampling cannot predicate results for all mutants

18

RQ3: Trade-off

Speed-up v.s. prediction accuracy (mean)

0.75 0.8 0.85 0.9 0.95

Accuracy

1

2

3

4

5

6

7
S

p
ee

d
-u

p
(l

o
g

)

overlap

overlap+mop

overlap+mloc

fca

fca+mop

fca+mloc

weak

Random sampling cannot predicate results for all mutants

18

Sum-up

Mutation compression v.s. random sampling:

Mutation compression: speed-up ↑ and accuracy ↑
Killable mutant results outperform overall mutation score

Mutation location trumps mutation operator
Future work:

Combining mutation operator and mutation location
Exploring other compression techniques
Applying to test-data generation

19

Sum-up

Mutation compression v.s. random sampling:

Mutation compression: speed-up ↑ and accuracy ↑
Killable mutant results outperform overall mutation score

Mutation location trumps mutation operator
Future work:

Combining mutation operator and mutation location
Exploring other compression techniques
Applying to test-data generation

19

Sum-up

Mutation compression v.s. random sampling:
Mutation compression: speed-up ↑ and accuracy ↑
Killable mutant results outperform overall mutation score

Mutation location trumps mutation operator
Future work:

Combining mutation operator and mutation location
Exploring other compression techniques
Applying to test-data generation

19

Sum-up

Mutation compression v.s. random sampling:
Mutation compression: speed-up ↑ and accuracy ↑
Killable mutant results outperform overall mutation score

Mutation location trumps mutation operator

Future work:

Combining mutation operator and mutation location
Exploring other compression techniques
Applying to test-data generation

19

Sum-up

Mutation compression v.s. random sampling:
Mutation compression: speed-up ↑ and accuracy ↑
Killable mutant results outperform overall mutation score

Mutation location trumps mutation operator
Future work:

Combining mutation operator and mutation location
Exploring other compression techniques
Applying to test-data generation

19

