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Mutation Testing

An actively investigated field since 1970s

� Main idea: small syntactic changes → test suite quality

� Benefit:
• better fault exposing capability

• a good alternative to real faults

� limitations:
• high computational cost

• undecidable Equivalent Mutant Problem

Our paper: speed up
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Cost reduction techniques

� Do fewer: selecting fewer mutants;

E.g., Selective Mutation

� Do smarter: avoiding unnecessary test executions;

E.g., Weak Mutation

� Do faster: reducing the execution time;

E.g., Mutation Schemata

Challenged by Gopinath et al. (ICSE 2016,TR 2017):

No practical advantage over pure random sampling

Offutt and Untch 2000
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Weak Mutation

For a test case t to kill a mutant m which mutates the
statement s of a program P, there are three conditions:

� Reachability

� Necessity

� Sufficiency

→ statement coverage

→ weak mutation

→ strong mutation
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Overall methodology
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Mutant clustering

Based on weak mutation

Overlapped grouping
elements are only grouped together if they are
identical

FCA-based grouping
Formal Concept Analysis; convey binary relations
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Mutant selection strategies

Cluster-based selection (CS)
randomly chooses one mutant from each cluster

CS + mutation operator type (mop)
divide each cluster into partitions by mutation operator types

and then random selection

CS + mutation location (mloc)
divide each cluster into partitions by mutant locations and

then random selection

mop 

m3
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mloc 
1
1
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Empirical study

� 20 open-source projects (Java): 397K+ LOC,

2K+ tests, 166K+ mutants

� 6+2 methods:

• overlap

• overlap+mop

• overlap+mloc

• fca

• fca+mop

• fca+mloc

• pure random

• weak mutation

baselines
� Research questions:

• RQ1: How accurate are different compression techniques?

• RQ2: How do compression techniques perform in terms of speed-up?

• RQ3: What is the trade-off between accuracy and speed-up?
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RQ1: accuracy performance

Absolute error

AE (C ,T ) =| strongM(C ,T )− estimatedM(C ,T ) | (1)

Results:
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RQ2: Speed-up performance

Speed-up

speed -up =
exec time(strong mutation)

exec time(approach)
(2)

Results:
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RQ3: Trade-off

Speed-up v.s. absolute error (mean)
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RQ3: Trade-off

Speed-up v.s. prediction accuracy (mean)
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Sum-up

Mutation compression v.s. random sampling:

Mutation compression: speed-up ↑ and accuracy ↑
Killable mutant results outperform overall mutation score

Mutation location trumps mutation operator
Future work:

Combining mutation operator and mutation location
Exploring other compression techniques
Applying to test-data generation
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