Mutation Testing for Physical

Computing

Qiangian Zhu
Ph.D. student

Co-author: Andy Zaidman

Software Engineering Research Group,
Delft University of Technology, Netherlands

QRS 2018, July 17, 2018

Physical Computing

Wearable Smart Home

Accidents in Physical Computing

Tesla Says Autopilot Was Engaged in Fatal Crash Under Investigation in
California

Vehicle's system shows driver had hands off the wheel for six seconds before striking highway divider

Most Popular Videos

The Last Cowboy at
Pine Creek Ranch

Finding the Perfect
$1,000 Windows
Laptop

‘Ready Player One’:
Can Spielberg's Film
Speed Up Adoption of
VR?

How to Delete Your
Facebook Account (or
Take Less Drastic
Measures)

Former Australian
Cricket Captain Breaks
Down at Press
Conference

Most Popular Articles
Towa’s Employment
_ Problem: Too Many
d % 3 2 - Jobs, Not Enough
A Tesla equipped with automated-control system crashed last week near Mountain View, Calif. PHOTO: PUBLISHED CREDIT: KTVU FOX People

2/REUTERS. Dominant Box Office —

Accidents in Physical Computing

Worker killed by robot in welding
accident at car parts factory in India

The man was reportedly stabbed by a metal arm and electrocuted

Lizzie Dearden @lizziedearden | Thursday 13 August 2015 15:02 | £ 1 comment

o o @ L ARTEN ciick to fallow
The Independent Online
e

Challenges in Testing Cyber-Physical Systems

Challenges in Testing Cyber-Physical Systems

We have thousands of tests already.

Challenges in Testing Cyber-Physical Systems

We have thousands of tests already.

crucial but not easy

A4

How good are tests?

Challenges in Testing Cyber-Physical Systems

We have thousands of tests already.

crucial but not easy

A4

How good are tests?

seek help in SE

Mutation Testing

Mutation Testing

Mutation Testing

An actively investigated field since 1970s
m Main idea: small syntactic changes — test suite quality

m Benefit:
« better fault exposing capability
. a good alternative to real faults

Mutation Testing

An actively investigated field since 1970s
m Main idea: small syntactic changes — test suite quality

m Benefit:
« better fault exposing capability
. a good alternative to real faults

Physical + Mutation —
Computing Testing —

LED example

RPi GPIO
time sleep
pbutton =2
pled =17
setup():
GPIO.setmode(GPIO.BCM)
GPI0O.setup(pled,GP10.0OUT,initial=GPIO.LOW)
‘ GPI0.setup(pbutton,GPIO.IN,pull_up_down=GPIO.PUD_DOWN)
GPIO.add_event_detect(pbutton, GPIO.RISING, bouncetime=200)
sv3[sv] e = e
GP2| 5V L
on():
z: % . L TT1 GPIO.output(pled,1)
oD fcpas| = T
[y [= q off():
EESTHET = ¢ . GPI10.output(pled,0)
Gp22[Gp23| = =
3v3|Gp24l = = - 4
GP1OJGND | = = i main
[[setup()
P11lcrs| = = (True):

GPIO.event_detected(pbutton): # Check to see if button has been pushed
activate = True
(activate is True): # Execute this code until the button is pushed again
on() # Turn LED on
GPIO.event_detected(pbutton): # Check for a 2nd button push
activate = False

off() # Turn LED off

LED example

setup():
GPIO.setmode(GPIO.BCM)
GPI0O.setup(pled,GP10.0OUT,initial=GPIO.LOW)
GPI0.setup(pbutton,GPIO.IN,pull_up_down=GPIO.PUD_DOWN)
GPIO.add_event_detect(pbutton, GPIO.RISING, bouncetime=200)

on():
GPI10.output(pled,1)

off():
GPI10.output(pled,0)

GPIO.event_detected(pbutton): # Check to see if button has been pushed
activate = True
(activate is True): # Execute this code until the button is pushed again
on() # Turn LED on
GPIO.event_detected(pbutton): # Check for a 2nd button push
activate = False

off() # Turn LED off

LED example

RPi GPIO
time sleep
pbutton =2
pled =17
setup():
GPIO.setmode(GPIO.BCM)
GPI0O.setup(pled,GP10.0OUT,initial=GPIO.LOW)
‘ GPI0.setup(pbutton,GPIO.IN,pull_up_down=GPIO.PUD_DOWN)
GPIO.add_event_detect(pbutton, GPIO.RISING, bouncetime=200)
sv3[sv] e = e
GP2| 5V L
on():
- :::, . L TT1 GPIO.output(pled,1)
onp Jcp1s| = m T
[y [= q off():
27l cho | « ¢ e GPIO.output(pled,0)
Gp22[Gp23| = =
3v3|Gp24l = = - 4
GP1OJGND | = = i main
[[setup()
P11lcrs| = = (True):

GPIO.event_detected(pbutton): # Check to see if button has been pushed
activate = True
(activate is True): # Execute this code until the button is pushed again
on() # Turn LED on
GPIO.event_detected(pbutton): # Check for a 2nd button push
activate = False

off() # Turn LED off

LED example with one mistake

RPi GPIO
time sleep
pbutton =2
pled =17
setup():
GPI0.setmode(GPIO.BCM)
GPIO.setup(pled,GPIO.OUT, initial=GPIO.LOW)
‘ GPIO.setup(pbutton,GPIO.IN,pull_up_down=GP10.PUD_DOWN)
» GPI10.add_event_detect(pbutton, GPIO.RISING, bouncetime=200)
vi[sv]w [t
P2 | 5v - on():
s [enn] =L e f OPIO Su i output value errors:
=R .output(pled,0) OutputValueReplacement (OVR)
GND |GP15| &= =
GpP17]GP1g)] U off():
CEER, = i . GPI10.output(pled,0)
GP22|GP23| = =
3v3 [6p2s] = —— # mai
GP1OJGND | = = # main
GPoolepos| = m setup()
11| P | = = [UCEH

GPIO.event_detected(pbutton): # Check to see if button has been pushed
activate = True
(activate is True): # Execute this code until the button is pushed again
on() # Turn LED on
GPIO.event_detected(pbutton): # Check for a 2nd button push
activate = False

off() # Turn LED off

Mutation Operators for Physical Computing

@output value error
@output setting omissions
@ pin number errors

@ input value errors

@ I/0 pin mode errors

@initial setup value errors

6 common mistakes

gy

2

7

[oc]

OutputValueReplacement (OVR)
OutputValueReplacement (OVR)
PinNumberReplacement (PNR)
InputValueReplacement (IVR)
EdgeDetectionReplacement (EDR)
I/OModeReplacement (IOMR)
SetuplnputReplacement (SIR)

SetupOutputReplacement (SOR)

SetupValueRemoval (SVR)

9 mutation operators

Empirical Evaluation

10

Empirical Evaluation

Our goal

10

Empirical Evaluation

Our goal
1]

Mutation testing guides better tests?

10

Empirical Evaluation

Our goal
1]

Mutation testing guides better tests?

Effectiveness
in evaluating
test quality

10

Empirical Evaluation

Our goal
1]

Mutation testing guides better tests?

Effectiveness
in evaluating
test quality

4

Coverage vs. MS

10

Empirical Evaluation

Our goal
1]

Mutation testing guides better tests?

AN

Effectiveness Effectiveness
in evaluating of mutants
test quality

4

Coverage vs. MS

10

Empirical Evaluation

Our goal
1]

Mutation testing guides better tests?

AN

Effectiveness Effectiveness
in evaluating of mutants
test quality Al
1 Manual
Coverage vs. MS analysis of
mutants

10

Empirical Evaluation

@ Subjects: 9 cyber-physical systems

gpiozero

~ jean-pierre line-follower (4 projects) four-wheel robot

hcsr04sensor

11

Empirical Evaluation

@ Subjects: 9 cyber-physical systems

gpiozero

~ jean-pierre line-follower (4 projects) four-wheel robot

hcsr04sensor

@ Platforms: Raspberry Pi & Arduino

11

Empirical Evaluation

@ Subjects: 9 cyber-physical systems

gpiozero

~ jean-pierre line-follower (4 projects) four-wheel robot

hcsr04sensor

@ Platforms: Raspberry Pi & Arduino

@ Languages: Python & C/C++

11

Results

@ Effectiveness in evaluating test suites

Il statement coverage
E—JImutation score

15
e 1 1
o 1r 0.96 0.97_10.97 i
(3]
@ 0.83
A 0.71 0.78
3
/2]
8021 I 0.41 037 |
0 Il 1 \\ Il
é @ © 2 &
Q\’ o® Q‘Q} & & ¢
< PP S N & 5O
\\c’é ¢ © \\(\Q)

subjects 12

Results

@ Effectiveness in evaluating test suites

Il statement coverage
E—JImutation score

1.5
e 1 1
o 1r 0.96 0.97 1097 i
@ 78 0.83
2 [o71 0.
3
/2]
:03 05 [0.41 0-37)
O 0 0 1 \\ Il
Q S @ © 2 &
) S &S () &)
Q\/ Q}\ 'Q\Q’ .\0'1/ 's(\ \\§
<& > N S 3 b
Q ~Q§Z’ S 0\) (]
0% AN R ‘\\(\

subjects 12

Results

@ Effectiveness in evaluating test suites

Il statement coverage
E—JImutation score

1.5

lo.g7 1

-
‘
o
©
-3

test suite score
o
o [6)]
©
I
- —
o
(T
o
=Y
—
o

Q S e)
NS A
&K ¥ R ®
Q o R S
& ¢ S
o

subjects

Results

@ Effectiveness in evaluating test suites

Il statement coverage
E—JImutation score

1.5
e 1 1
o 1r 0.96 0.97_10.97 i
(3]
@ 0.83
2 0.71 0.78
3
/2]
I3 05 0.41 037 |
O Il 0 Il Il 0 1 \\ Il
Q S @ <© 2 &
) S &S Q)
> & & S5 & ,\\\0{\

B integration part: mutation score > statement coverage

12

Results

@ Effectiveness of mutants

1036 ||\
Mutants

remove

Mutants

12
Mutants

1.16%

Equivalent

extra tests

962
Mutants

92.86%

19
Mutants

1.83%

=

.86%

40
Mutants

-/ killed

I

code
refactoring

test setups

) not killed

hardware

Mutants

< notkilled

13

Results

@ Effectiveness of mutants

1036 ||\
Mutants

remove

Mutants

12
Mutants

1.16%

Equivalent

extra tests

962
Mutants

92.86%

19
Mutants

1.83%

=

.86%

40
Mutants

-/ killed

I

code
refactoring

test setups

) not killed

hardware

Mutants

< notkilled

13

Results

@ Effectiveness of mutants

1036 ||\
Mutants

remove

Mutants

12
Mutants

1.16%

Equivalent

extra tests

962
Mutants

92.86%

19
Mutants

1.83%

=

.86%

40
Mutants

Mutants

killed

I

code
refactoring

test setups

) not killed

hardware

< notkilled

13

Results

@ Effectiveness of mutants

W 94.69% mutants — effective
B mutation score # test quality
B non-killable C equivalent?

@
1036 || VAN
Mutants

12
Mutants

1.16%

Equivalent

962
Mutants

92.86%
19
Mutants

1.83%

40
Mutants

3.86%

3
Mutants

0.28%

—> killed

T

code
refactoring

test setups

) not killed

hardware

< notkilled

13

@ What we have done:

@ 9 mutation operators for physical computing
@ a preliminary experiment on 9 systems

14

@ What we have done:

@ 9 mutation operators for physical computing
@ a preliminary experiment on 9 systems

@ What we have learned:

Physical + Mutation |
Computing Testing —

Encouraging!

14

@ What we have done:

@ 9 mutation operators for physical computing
@ a preliminary experiment on 9 systems

@ What we have learned:

Physical + Mutation | =
Computing Testing —

Encouraging!

e What we plan to do:

@ more case studies
e traditional mutation operators vs. ours
e fault-finding ability vs. mutation score

14

Case studies with Raspberry Pi

@ Test environment:
Raspberry Pi — one-chip computer, mutation testing tool
@ Subjects:

‘ gpiozero
b J

jean-pierre AR
! P hcsr04sensor

15

Case studies with Arduino

@ Subject: line-follower robot

WiFi Bluetooth|
Smartphone | Laptop | N Tank

@ Test environment: hardware monitor

16

