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Accidents in Physical Computing

Tesla Says Autopilot Was Engaged in Fatal Crash Under Investigation in
California

Vehicle's system shows driver had hands off the wheel for six seconds before striking highway divider
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Accidents in Physical Computing

Worker killed by robot in welding
accident at car parts factory in India

The man was reportedly stabbed by a metal arm and electrocuted

Lizzie Dearden  @lizziedearden | Thursday 13 August 2015 15:02 | £ 1 comment
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Mutation Testing

An actively investigated field since 1970s
m Main idea: small syntactic changes — test suite quality
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LED example

RPi GPIO
time sleep
pbutton =2
pled =17
setup():
GPIO.setmode(GPIO.BCM)
GPI0O.setup(pled,GP10.0OUT,initial=GPIO.LOW)
‘ GPI0.setup(pbutton,GPIO.IN,pull_up_down=GPIO.PUD_DOWN)
GPIO.add_event_detect(pbutton, GPIO.RISING, bouncetime=200)
sv3[sv] e = e
GP2| 5V L
on():
z: % . L TT1 GPIO.output(pled,1)
oD fcpas| = T
[y [ = q off():
EESTHET = ¢ . GPI10.output(pled,0)
Gp22[Gp23| = =
3v3|Gp24l = = - 4
GP1OJGND | = = i main
[ [ setup()
P11lcrs| = = (True):

GPIO.event_detected(pbutton): # Check to see if button has been pushed
activate = True
(activate is True): # Execute this code until the button is pushed again
on() # Turn LED on
GPIO.event_detected(pbutton): # Check for a 2nd button push
activate = False

off() # Turn LED off
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LED example with one mistake

RPi GPIO
time sleep
pbutton =2
pled =17
setup():
GPI0.setmode(GPIO.BCM)
GPIO.setup(pled,GPIO.OUT, initial=GPIO.LOW)
‘ GPIO.setup(pbutton,GPIO.IN,pull_up_down=GP10.PUD_DOWN)
» GPI10.add_event_detect(pbutton, GPIO.RISING, bouncetime=200)
vi[sv]w [t
P2 | 5v - on():
s [enn] =L e f OPIO Su i output value errors:
=R .output(pled,0) OutputValueReplacement (OVR)
GND |GP15| &= =
GpP17]GP1g) ] U off():
CEER, = i . GPI10.output(pled,0)
GP22|GP23| = =
3v3 [6p2s] = —— # mai
GP1OJGND | = = # main
GPoolepos| = m setup()
11| P | = = [UCEH

GPIO.event_detected(pbutton): # Check to see if button has been pushed
activate = True
(activate is True): # Execute this code until the button is pushed again
on() # Turn LED on
GPIO.event_detected(pbutton): # Check for a 2nd button push
activate = False

off() # Turn LED off



Mutation Operators for Physical Computing

@output value error
@output setting omissions
@ pin number errors

@ input value errors

@ I/0 pin mode errors

@initial setup value errors

6 common mistakes

gy

2

7

[oc]

OutputValueReplacement (OVR)
OutputValueReplacement (OVR)
PinNumberReplacement (PNR)
InputValueReplacement (IVR)
EdgeDetectionReplacement (EDR)
I/OModeReplacement (IOMR)
SetuplnputReplacement (SIR)

SetupOutputReplacement (SOR)

SetupValueRemoval (SVR)

9 mutation operators
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Empirical Evaluation

@ Subjects: 9 cyber-physical systems

gpiozero

~ jean-pierre line-follower (4 projects) four-wheel robot

hcsr04sensor

@ Platforms: Raspberry Pi & Arduino

@ Languages: Python & C/C++

11



Results

@ Effectiveness in evaluating test suites

Il statement coverage
E—JImutation score
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Results

@ Effectiveness in evaluating test suites

Il statement coverage
E—JImutation score
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Results

@ Effectiveness of mutants
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Results

@ Effectiveness of mutants

W 94.69% mutants — effective
B mutation score # test quality
B non-killable C equivalent?

@
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@ What we have done:

@ 9 mutation operators for physical computing
@ a preliminary experiment on 9 systems
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@ What we have done:

@ 9 mutation operators for physical computing
@ a preliminary experiment on 9 systems

@ What we have learned:

Physical + Mutation | =
Computing Testing —

Encouraging!

e What we plan to do:

@ more case studies
e traditional mutation operators vs. ours
e fault-finding ability vs. mutation score
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Case studies with Raspberry Pi

@ Test environment:
Raspberry Pi — one-chip computer, mutation testing tool
@ Subjects:

‘ gpiozero
b J

jean-pierre AR
! P hcsr04sensor
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Case studies with Arduino

@ Subject: line-follower robot

WiFi Bluetooth|
Smartphone | Laptop | N Tank

@ Test environment: hardware monitor
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