Mutation Testing for Physical Computing

Qianqian Zhu

Ph.D. student

Co-author: Andy Zaidman

Software Engineering Research Group, Delft University of Technology, Netherlands

QRS 2018, July 17, 2018

Physical Computing

,

Accidents in Physical Computing

Tesla Says Autopilot Was Engaged in Fatal Crash Under Investigation in California

Vehicle's system shows driver had hands off the wheel for six seconds before striking highway divider

A Te sla equipped with automated-control system crashed last week near Mountain View, Calif. PHOTO: PUBLISHED CREDIT: KTVU FOX 2/REUTERS.

Most Popular Videos

The Last Cowboy at Pine Creek Ranch

2. Finding the Perfect \$1,000 Windows Laptop

'Ready Player One': Can Spielberg's Film Speed Up Adoption of VR?

How to Delete Your Facebook Account (or Take Less Drastic Measures)

5 Former Australian Cricket Captain Breaks Down at Press Conference

Most Popular Articles

Iowa's Employment Problem: Too Many Jobs, Not Enough People

) Dominant Box Office

Accidents in Physical Computing

Worker killed by robot in welding accident at car parts factory in India

The man was reportedly stabbed by a metal arm and electrocuted

Lizzie Dearden | @lizziedearden | Thursday 13 August 2015 15:02 | 🖵 1 comment

We have thousands of tests already.

Mutation Testing

Mutation Testing

An actively investigated field since 1970s

lacktriangle Main idea: small syntactic changes o test suite quality

■ Benefit:

- better fault exposing capability
- a good alternative to real faults

Mutation Testing

An actively investigated field since 1970s

■ Main idea: small syntactic changes → test suite quality

■ Benefit:

- better fault exposing capability
- a good alternative to real faults

LED example


```
from RPi import GPIO
from time import sleep
pbutton = 2
pled = 17
def setup():
  GPIO.setmode(GPIO.BCM)
  GPIO.setup(pled.GPIO.OUT.initial=GPIO.LOW)
  GPIO.setup(pbutton,GPIO.IN,pull_up_down=GPIO.PUD_DOWN)
  GPIO.add event detect(pbutton, GPIO.RISING, bouncetime=200)
def on():
  GPIO.output(pled.1)
def off():
  GPIO.output(pled,0)
# main
setup()
while (True):
  if GPIO.event_detected(pbutton): # Check to see if button has been pushed
    activate = True
    while (activate is True): # Execute this code until the button is pushed again
      on() # Turn LED on
       if GPIO.event_detected(pbutton): # Check for a 2nd button push
         activate = False
  else:
    off() # Turn LED off
```

LED example


```
from RPi import GPIO
from time import sleep
pbutton = 2
pled = 17
def setup():
  GPIO.setmode(GPIO.BCM)
  GPIO.setup(pled.GPIO.OUT.initial=GPIO.LOW)
  GPIO.setup(pbutton,GPIO.IN,pull up down=GPIO.PUD DOWN)
  GPIO.add event detect(pbutton, GPIO.RISING, bouncetime=200)
def on():
  GPIO.output(pled.1)
def off():
  GPIO.output(pled,0)
# main
setup()
while (True):
  if GPIO.event_detected(pbutton): # Check to see if button has been pushed
    activate = True
    while (activate is True): # Execute this code until the button is pushed again
      on() # Turn LED on
       if GPIO.event detected(pbutton): # Check for a 2nd button push
         activate = False
  else:
    off() # Turn LED off
```

LED example


```
from RPi import GPIO
 from time import sleep
pbutton = 2
pled = 17
def setup():
  GPIO.setmode(GPIO.BCM)
  GPIO.setup(pled.GPIO.OUT.initial=GPIO.LOW)
  GPIO.setup(pbutton,GPIO.IN,pull_up_down=GPIO.PUD_DOWN)
  GPIO.add event detect(pbutton, GPIO.RISING, bouncetime=200)
Idef on():
  GPIO.output(pled.1)
def off():
  GPIO.output(pled.0)
 # main
setup()
while (True):
  if GPIO.event_detected(pbutton): # Check to see if button has been pushed
     activate = True
     while (activate is True): # Execute this code until the button is pushed again
       on() # Turn LED on
       if GPIO.event_detected(pbutton): # Check for a 2nd button push
          activate = False
   else:
     off() # Turn LED off
```

LED example with one mistake


```
from RPi import GPIO
from time import sleep
pbutton = 2
pled = 17
def setup():
  GPIO.setmode(GPIO.BCM)
  GPIO.setup(pled,GPIO.OUT,initial=GPIO.LOW)
  GPIO.setup(pbutton,GPIO.IN,pull up down=GPIO.PUD DOWN)
  GPIO.add event detect(pbutton, GPIO.RISING, bouncetime=200)
def on():
                                 output value errors:
  GPIO.output(pled,0)
                                 OutputValueReplacement (OVR)
def off():
  GPIÖ.output(pled.0)
# main
setup()
while (True):
  if GPIO.event_detected(pbutton): # Check to see if button has been pushed
    activate = True
    while (activate is True): # Execute this code until the button is pushed again
      on() # Turn LED on
      if GPIO.event detected(pbutton): # Check for a 2nd button push
         activate = False
  else
    off() # Turn LED off
```

Mutation Operators for Physical Computing

1 output value error	1 OutputValueReplacement (OVR)
2 output setting omissions	2 OutputValueReplacement (OVR)
3 pin number errors	3 PinNumberReplacement (PNR)
4 input value errors	4 InputValueReplacement (IVR)
(5 EdgeDetectionReplacement (EDR)
5 I/O pin mode errors	6 I/OModeReplacement (IOMR)
6 initial setup value errors	7 SetupInputReplacement (SIR)
(8 SetupOutputReplacement (SOR)
(9 SetupValueRemoval (SVR)
6 common mistakes	9 mutation operators

Our goal

• **Subjects:** 9 cyber-physical systems

• **Subjects:** 9 cyber-physical systems

• Platforms: Raspberry Pi & Arduino

• **Subjects:** 9 cyber-physical systems

• Platforms: Raspberry Pi & Arduino

Languages: Python & C/C++

Effectiveness in evaluating test suites

12

Summary

- What we have done:
 - 9 mutation operators for physical computing
 - a preliminary experiment on 9 systems

Summary

- What we have done:
 - 9 mutation operators for physical computing
 - a preliminary experiment on 9 systems
- What we have learned:

Summary

- What we have done:
 - 9 mutation operators for physical computing
 - a preliminary experiment on 9 systems
- What we have learned:

- What we plan to do:
 - more case studies
 - traditional mutation operators vs. ours
 - fault-finding ability vs. mutation score

Case studies with Raspberry Pi

- Test environment:
 Raspberry Pi → one-chip computer, mutation testing tool
- Subjects:

Case studies with Arduino

• Subject: line-follower robot

• Test environment: hardware monitor

